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ВВЕДЕНИЕ

К важнейшим показателям качества объектов относится надеж-
ность. Надежность в узком смысле представляет собой свойство объ-
екта сохранять работоспособность в течение заданного интервала вре-
мени. 

В теории надежности все технические объекты подразделяются на 
элементы и системы. В зависимости от цели исследования один и тот 
же объект может рассматриваться как система или как элемент. Под си-
стемой понимают совокупность элементов, взаимодействующих между 
собой в процессе выполнения заданных функций. Элементом системы 
называют любой объект, внутренняя структура которого на данном 
этапе анализа надежности не учитывается, т. е. он рассматривается как 
единое и неделимое целое («черный ящик»). Понятия «элемент» и «си-
стема» выражаются друг через друга и относительны, поскольку то, что 
является системой для одних задач, для других выступает в качестве 
элемента, и наоборот. 

Непрерывный рост требований к современной технике, резкое 
увеличение сложности систем, а также выполняемых ими функций, 
расширение условий их эксплуатации обусловили необходимость раз-
работки научных основ надежности технических систем. Вопросам 
обеспечения надежности уделяется значительное внимание на всех эта-
пах жизненного цикла технических систем: при проектировании, изго-
товлении и эксплуатации. Без постановки и проведения специальных 
работ по обеспечению надежности сложные системы недостаточно эф-
фективны и безопасны. 

Данное пособие предназначено для изучения основных теорети-
ческих сведений по показателям надежности технических элементов 
и нерезервированных систем, приобретения практических навыков их 
определения, а также содержит задания для закрепления теоретических 
знаний. В пособии на конкретных примерах рассмотрено определение 
показателей надежности и предложены задачи для самостоятельного 
решения обучающимися. Приведены справочные материалы, необхо-
димые для выполнения расчетов надежности. 

Пособие состоит из двух частей. В первой части рассматриваются 
основные понятия теории надежности, единичные и комплексные по-
казатели надежности технических элементов, законы распределения, 
используемые в моделях безотказности и восстанавливаемости. Вторая 



часть посвящена надежности нерезервированных систем; в ней пред-
ставлены основные расчетные формулы для системных показателей 
надежности, структурные методы решения двух типовых задач, возни-
кающих при исследовании надежности нерезервированных систем. 
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1 . ОПРЕДЕЛЕНИЕ  ЕДИНИЧНЫХ  И  КОМПЛЕКСНЫХ  
ПОКАЗАТЕЛЕЙ  НАДЕЖНОСТИ  ТЕХНИЧЕСКИХ  
ЭЛЕМЕНТОВ  

1.1. Методические  указания  по  теоретической  части  

Надежность – свойство объекта сохранять во времени в установ-
ленных пределах значения всех параметров, характеризующих его спо-
собность выполнять требуемые функции в заданных режимах и усло-
виях применения, технического обслуживания, хранения и транспорти-
рования. 

Надежность как комплексное свойство включает в себя следую-
щие единичные свойства: безотказность, ремонтопригодность, сохра-
няемость, долговечность. 

Безотказность – свойство объекта непрерывно сохранять работо-
способность (выполнять свои функции с эксплуатационными показате-
лями не хуже заданных) в течение требуемого интервала времени. 

Ремонтопригодность – свойство объекта, заключающееся в его 
приспособленности к поддержанию и восстановлению работоспособ-
ного состояния путем технического обслуживания и ремонта. 

Долговечность – свойство объекта сохранять работоспособность 
до наступления предельного состояния при установленной системе 
технического обслуживания и ремонта. Предельное состояние – состо-
яние, при котором дальнейшая эксплуатация или восстановление объ-
екта недопустимы или нецелесообразны вследствие физического ста-
рения (износа). 

Сохраняемость – свойство объекта сохранять в заданных преде-
лах значения показателей, характеризующих способность выполнять 
требуемые функции при хранении и транспортировке. 

Безотказность характеризуется техническим состоянием объекта. 
Работоспособным считается такое состояние объекта, при котором зна-
чение всех параметров, характеризующих способность выполнять за-
данные функции, соответствует требованиям нормативно-технической 
и/или конструкторской (проектной) документации. Неработоспособ-
ным является такое состояние объекта, при котором значение хотя бы 
одного параметра не соответствует требованиям указанной 
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документации. Переход объекта из работоспособного в неработоспо-
собное состояние означает отказ. Восстановление – событие, заключа-
ющееся в переходе объекта из неработоспособного в работоспособное 
состояние. 

Отказы классифицируются по различным признакам. В зависимо-
сти от скорости изменения параметров объекта до момента возникно-
вения отказа различают внезапные и постепенные отказы. Внезапный 
отказ – отказ, возникающий неожиданно и характеризующийся скач-
кообразным изменением одного или нескольких параметров объекта. 
Анализ 𝑦!(𝑡) не позволяет прогнозировать отказ (рис. 1.1). Причинами 
внезапных отказов являются обрывы, короткие замыкания, механиче-
ские поломки. 

Рис. 1.1. Пример внезапного отказа 

Постепенный отказ – отказ, возникающий в результате постепен-
ного изменения одного или нескольких параметров объекта. При посте-
пенном отказе характер изменения координаты 𝑦!(𝑡) позволяет прогно-
зировать момент отказа (рис. 1.2). 

Рис. 1.2. Пример постепенного отказа 



8 

По характеру устранения различают устойчивые, самоустраняю-
щиеся и перемежающиеся отказы. Устойчивые отказы не исчезают са-
мопроизвольно; после устойчивого отказа необходимо проведение ре-
монта или замена элемента. Самоустраняющиеся отказы (сбои) само-
произвольно устраняются без вмешательства оператора в результате 
естественного возврата объекта в работоспособное состояние; их дли-
тельность мала, а негативные последствия несущественны. Перемежа-
ющийся отказ – многократно возникающий самоустраняющийся отказ 
одного и того же характера; для его устранения обычно необходимо 
вмешательство оператора. 

По характеру проявления различают явные и скрытые отказы. Яв-
ные отказы выявляются визуально или методами и средствами контроля 
и диагностирования. Скрытые отказы обнаруживаются при техниче-
ском обслуживании или специальными методами диагностирования. 

По характеру взаимосвязи отказы подразделяются на зависимые 
и независимые. Зависимые отказы нескольких элементов обусловлены 
одной причиной. Независимые отказы нескольких элементов вызваны 
различными причинами, при этом вероятность одновременных отказов 
пренебрежимо мала. 

Для электротехнических элементов (например, резисторов, полу-
проводниковых диодов, транзисторов, реле и т. д.) могут возникать два 
типа отказов: обрыв и короткое замыкание. При обрыве снижается до 
нуля проводимость, а при коротком замыкании – сопротивление. Об-
рыв является наиболее распространенным видом отказа электротехни-
ческих элементов и систем. В частности, для технических средств ав-
томатизации доля отказов типа «обрыв» составляет 70–80 %. Хотя от-
казы типа «короткое замыкание» наблюдаются существенно реже, они 
более опасны для других элементов электротехнических систем, по-
скольку значительно изменяют режим их работы. 

По возможности восстановления различают восстанавливаемые 
и невосстанавливаемые отказы. Восстанавливаемые отказы допус-
кают проведение ремонта элемента, причем данный ремонт экономиче-
ски выгоднее приобретения нового элемента. Невосстанавливаемые 
отказы вызывают полное разрушение элемента, и ремонт отказавшего 
элемента нецелесообразен по экономическим соображениям. 

При наличии нескольких уровней работоспособности различают 
полные и частичные отказы. При полном отказе объект прекращает вы-
полнять все заданные функции. При частичном отказе объект не мо-
жет выполнять одну или более возложенных на него функций, а осталь-
ные могут выполняться. 



 9 

В зависимости от причины возникновения отказы подразделяются 
на конструкционные, производственные и эксплуатационные. Кон-
струкционные отказы возникают в результате несовершенства и нару-
шения правил и/или норм проектирования и конструирования объекта. 
Производственные отказы обусловлены несовершенством или нару-
шением технологического процесса изготовления, монтажа, наладки 
или ремонта, если он выполнялся на ремонтном предприятии. Эксплу-
атационные отказы возникают в результате нарушения установлен-
ных правил и/или условий эксплуатации. 

Надежность технических элементов и систем характеризуется 
функциональными и числовыми показателями. Различают единичные 
и комплексные показатели надежности. К единичным относятся пока-
затели безотказности, ремонтопригодности, долговечности и сохраняе-
мости. Комплексные показатели характеризуют несколько единичных 
свойств, например безотказность и ремонтопригодность. Для техниче-
ских средств автоматизации показатели долговечности и сохраняемо-
сти неактуальны и далее не рассматриваются. 

Различают восстанавливаемые и невосстанавливаемые элементы. 
Невосстанавливаемыми являются такие изделия, восстановление кото-
рых непосредственно после отказа считается нецелесообразным или 
невозможным. Большинство изделий, применяемых для автоматизации 
технологических процессов, являются восстанавливаемыми. Невосста-
навливаемыми считаются такие элементы, как конденсаторы, рези-
сторы, интегральные схемы и т. п. 

Выполнение расчетов надежности осуществляют на основе мате-
матических моделей надежности изделий. Модель надежности невос-
станавливаемого элемента является наиболее простой, поскольку пред-
ставляет собой модель безотказности. Модель надежности восстанав-
ливаемого элемента включает модель безотказности, модель восстанав-
ливаемости, модель контроля и диагностирования. 

К функциональным показателям безотказности относятся: 
1. Вероятность отказа (функция ненадежности) – вероятность 

того, что при заданных условиях эксплуатации в течение заданной 
наработки произойдет хотя бы один отказ: 

𝑄(𝑡) = 𝑃{𝑇 < 𝑡}, 𝑡 ≥ 0,	

где 𝑇 – время безотказной работы элемента. 
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Кроме вероятностного определения 𝑄(𝑡), существует статистиче-
ское определение, получаемое по статистическим данным об отказах. 
Статистическая функция ненадежности: 

𝑄0(𝑡) =
𝑁 − 𝑁(𝑡)

𝑁
, 

где N – количество испытываемых изделий; 𝑁(𝑡) – количество работо-
способных изделий в момент времени t. 

2. Вероятность безотказной работы (функция надежности) –
вероятность того, что изделие работоспособно в течение заданной 
наработки при заданных условиях эксплуатации: 

𝑃(𝑡) = 𝑃{𝑇 > 𝑡}, 𝑡 ≥ 0. 

Статистическая функция надежности: 

𝑃0(𝑡) =
𝑁(𝑡)
𝑁

. 

3. Плотность распределения времени безотказной работы:

𝑓(𝑡) =
𝑑𝑄(𝑡)
𝑑𝑡

= −
𝑑𝑃(𝑡)
𝑑𝑡

,	 7 𝑓(𝑡)𝑑𝑡
"

#
= 1, 

𝑃(𝑡) = 7 𝑓(τ)𝑑τ
"

$
, 	 𝑄(𝑡) = 7 𝑓(τ)𝑑τ

$

#
. 

Статистическая плотность распределения: 

𝑓:(𝑡) =
Δ𝑁/Δ𝑡
𝑁

, 

где t – середина малого интервала времени	Δ𝑡; Δ𝑁 – число отказов на 
интервале Δ𝑡. 

4. Интенсивность отказов – условная плотность распределения
наработки до отказа в момент t при условии, что до этого момента от-
казы не возникали: 
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λ(𝑡) =
𝑓(𝑡)
𝑃(𝑡)

= −
𝑃%(𝑡)
𝑃(𝑡)

= −>ln𝑃 (𝑡)A
%, 

𝑃(𝑡) = exp E−7 λ(τ)𝑑τ
$

#
F , 	 𝑄(𝑡) = 1 − expE−7 λ(τ)𝑑τ

$

#
F, 

𝑓(𝑡) = λ(𝑡) expE−7 λ(τ)𝑑τ
$

#
F. 

Статистическая интенсивность отказов: 

λ0(𝑡) =
Δ𝑁/Δ𝑡
𝑁(𝑡)

. 

Статистические данные по надежности технических элементов 
свидетельствуют о том, что типичная зависимость интенсивности отка-
зов от времени имеет U-образный характер (рис. 1.3). 

Рис. 1.3. Типичная статистическая интенсивность отказов 
элементов 
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На графике можно выделить три характерных участка: 
I – период приработки [0, 𝑡&], 
II – период нормальной эксплуатации [𝑡&, 𝑡'], 
III – период старения 𝑡 > 𝑡'. 
На периоде приработки наблюдается уменьшение интенсивности 

отказов. На этом этапе выявляются скрытые дефекты, не обнаруженные 
техническим контролем элементов. 

Второй участок (период нормальной эксплуатации) характеризу-
ется пониженным уровнем и примерным постоянством интенсивности 
отказов. Здесь отказы носят в основном внезапный характер из-за не-
соблюдения условий эксплуатации, случайных изменений нагрузки, 
неблагоприятных внешних факторов и т. п. Продолжительность этого 
периода зависит от срока службы элементов и от условий эксплуатации. 

Период старения (физического износа) характеризуется резким 
возрастанием интенсивности отказов, что обусловлено необратимыми 
физико-химическими процессами. 

К числовым показателям безотказности относятся: 
1) средняя наработка до отказа – математическое ожидание слу-

чайной величины T: 

𝑡н = 𝑀[𝑇] = 7 𝑡
"

#
⋅ 𝑓(𝑡)𝑑𝑡 = 7 𝑃(𝑡)𝑑𝑡

"

#
= 7 >1 − 𝑃(𝑡)A𝑑𝑡

"

#
, 

tн = 7 expE−7 λ(τ)𝑑τ
$

#
F𝑑𝑡

"

#
. 

Оценка средней наработки до отказа определяется по эксперимен-
тальным значениям наработки до отказа (𝑡) , 𝑗 = 1,… ,𝑁): 

𝑡̂н =
1
𝑁
O𝑡)

*

)+&

. 

Значение 𝑡̂н часто указывается в техническом паспорте элемента; 
2) дисперсия и среднеквадратическое отклонение наработки до

отказа: 
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σ' = 𝐷[𝑇] = 𝑀[(𝑇 − 𝑡н)'] = 7 (𝑡 − 𝑡н)'
"

#
⋅ 𝑓(𝑡)𝑑𝑡, 

σ = Rσ'. 
Оценки дисперсии и среднеквадратического отклонения: 

𝜎T' =
1

𝑁 − 1
O>𝑡) − 𝑡̂нA

'
*

)+&

, 	 σU = R𝜎T'; 

3) гамма-ресурс:

𝑡, = arg>𝑃(𝑡) ≥ 𝑃,A, 

т. е. гамма-ресурс – это отрезок времени Z0, 𝑡,[, на котором вероятность 
безотказной работы не ниже заданной величины 𝑃, (рис. 1.4): 

𝑃(𝑡) ≥ 𝑃,, 

где 𝑃, – заданный (желаемый или гарантированный) уровень надежно-
сти. 

Рис. 1.4. Гамма-ресурс 
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Оценка гамма-ресурса 𝑡̂- определяется по статистической функ-
ции надежности 𝑃0(𝑡). 

Для технических средств автоматизации, работающих в нормаль-
ных условиях эксплуатации, удовлетворительным считается гаранти-
рованный уровень надежности 𝑃, = 0,9 ÷ 0,95;  

4) вероятность безотказной работы элемента в характерные
моменты времени 𝑡., ℎ = 1,… ,𝑁: 

𝑃(𝑡.) = 𝑃{𝑇 ≥ 𝑡.}, 

где, например, 𝑡. = 1000, 2000, 4000, 8000… часов. 
Непрерывная случайная величина T – наработка до отказа – может 

описываться различными законами распределения в зависимости от 
свойств системы и ее элементов, условий работы, характера отказов 
и т. д. Поведение наработки до отказа технических средств автоматиза-
ции удовлетворительно аппроксимируется следующими законами рас-
пределения:  

а) экспоненциальное распределение: 

𝐹(𝑡) = 1 − 𝑒/0$, 	 𝑓(𝑡) = λ𝑒/0$,	

𝑃(𝑡) = 𝑒/0$, 	 𝑄(𝑡) = 1 − 𝑒/0$,	

λ(𝑡) =
λ𝑒/0$

𝑒/0$
= λ,	 𝑡н = 7 𝑃(𝑡)𝑑𝑡

"

#
= 7 𝑒/0$

"

#
𝑑𝑡 =

1
λ
,	

σ' = 7 (𝑡 − 𝑡н)'
"

#
⋅ 𝑓(𝑡)𝑑𝑡 = 7 b𝑡 −

1
λ
c
'"

#
⋅ λ𝑒/0$𝑑𝑡 =

1
λ'
,	

где λ > 	0 – параметр этого распределения. 
Графики зависимостей функциональных показателей надежности 

от времени для экспоненциального распределения представлены на 
рис. 1.5. 

Для экспоненциального распределения характерно, что условная 
вероятность безотказной работы элемента на интервале времени (𝑡&, 𝑡') 
при условии его работоспособности до момента 𝑡& зависит только от 
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длительности этого интервала и не зависит от его расположения на оси 
времени (рис. 1.6): 

𝑃(𝑡&, 𝑡') =
1!"#$

1!"#%
= 𝑒/0($$/$%) = 𝑒/04$, (1.1) 

где 𝑃(𝑡&, 𝑡') – вероятность безотказной работы элемента на интервале 
Δ𝑡 = 𝑡' − 𝑡&. Соотношение (1.1) является следствием свойства, которое 
называется отсутствием последействия. При наличии этого свойства 
показатели надежности элемента зависят только от его состояния 
в начале рассматриваемого интервала времени, но не зависят от того, 
сколько элемент проработал до этого интервала. 

Рис. 1.5. Зависимости функциональных показателей надежности 
для экспоненциального распределения 

Рис. 1.6. Иллюстрация свойства экспоненциального распределения 
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Экспоненциальный закон распределения используется для описа-
ния надежности элемента в период его нормальной эксплуатации. Экс-
поненциальное распределение удовлетворительно описывает поведе-
ние наработки до внезапного отказа сложных элементов, которые со-
стоят из большого числа K разнородных деталей с интенсивностями от-
казов λ)(𝑡), 𝑗 = 1,2, … , 𝐾, имеющими экстремумы в разные моменты 
времени 𝑡) , 𝑗 = 1,2, … , 𝐾 (рис. 1.7). Примерами таких элементов явля-
ются электронные устройства, средства вычислительной техники, 
пневмоавтоматики и другие технические средства автоматизации. 

Рис. 1.7. Иллюстрация возможности применения экспоненциального 
распределения 

Экспоненциальное распределение хорошо описывает надежность 
технических средств автоматизации, которые обладают малым перио-
дом приработки элементов и почти не достигают периода старения из-
за относительно быстрого морального износа и замены на более совер-
шенные. 

Экспоненциальное распределение наиболее часто применяют 
в расчетах надежности систем, состоящих из большого числа элемен-
тов с неизвестными характеристиками надежности; 

б) распределение Вейбулла: 

𝐹(𝑡) = 1 − 𝑒/(5$)& , 	 𝑓(𝑡) = 𝑚𝑘(𝑘𝑡)6/&𝑒/(5$)& ,	
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𝑃(𝑡) = 𝑒/(5$)& , 	 𝑄(𝑡) = 1 − 𝑒/(5$)& , 	 λ(𝑡) = 𝑚𝑘(𝑘𝑡)6/&,	

𝑡н =
Γi1 + 1

𝑚k
𝑘

,	 σ' =
1
𝑘' l

Γ b1 +
2
𝑚
c − Γ' b1 +

1
𝑚
cm ,	

где k и m – параметры распределения; Γ i1 + &
6
k – гамма-функция: 

Γ b1 +
1
𝑚
c = 7 𝑡

&
6

"

#
⋅ 𝑒/$𝑑𝑡. 

Табулированные значения гамма-функции приведены в прил. 1. 
Параметр k определяет масштаб распределения, а параметр m – 

вид распределения. При 𝑚 = 1 оно превращается в экспоненциальное, 
а при 𝑚 = 2 – в распределение Релея. Обычно значения параметра 
0,5	 ≤ 𝑚	 ≤ 2,5. Зависимости функциональных показателей надежно-
сти для распределения Вейбулла при трех значениях параметра 
𝑚 = 0,5; 	1; 	2 приведены на рис. 1.8. 

Распределение Вейбулла используется на участках приработки 
(при 𝑚 < 1), нормальной эксплуатации (при 𝑚 = 1) и старения (при 
𝑚 > 1). Данное распределение со значением параметра 0,5	 ≤ 𝑚	 ≤ 2,5 
широко применяется для описания поведения наработки до отказа мно-
гих сложных радиоэлектронных устройств, которые состоят из боль-
шого количества однородных элементов с монотонными функциями 
интенсивности отказов; 

в) нормальное распределение: 

𝐹(𝑡) = 1 −
1

σ√2π
7 exp E−

(τ − 𝑡н)'

2σ' F𝑑τ,
$

/"
	

𝑓(𝑡) =
1

σ√2π
exp E−

(𝑡 − 𝑡н)'

2σ' F ,	

𝑃(𝑡) =
1

σ√2π
7 expE−

(τ − 𝑡н)'

2σ' F𝑑τ
"

$
,	



18 

𝑄(𝑡) = 1 −
1

𝜎√2𝜋
7𝑒𝑥𝑝 E

−(𝜏 − 𝑡н)'

2𝜎' F𝑑𝜏,
$

/"

 

λ(𝑡) =
exp b− (𝑡 − 𝑡н)

'

2σ' c

∫ exp b− (τ − 𝑡н)
'

2σ' c𝑑τ"
$

,	

где 𝑡н и σ' – параметры распределения. Графики функциональных по-
казателей надежности для нормального распределения представлены 
на рис. 1.9. 

Рис. 1.8. Показатели надежности для распределения Вейбулла 
при различных m 

Нормальное распределение можно использовать для описания по-
ложительной наработки на отказ только при (𝑡н ≥ (2 − 3)σ), так как 
возникающая при этом погрешность за счет «отбрасывания» значений 
характеристик при 𝑡 < 0 мала. Например, при 𝑡н = 3σ доля не 
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учитываемой плотности при отрицательных t составляет примерно 
0,15 %, а при 𝑡н = 2σ – не более 2,5 %. 
 

 
Рис. 1.9. Показатели надежности для нормального распределения  

Нормальное распределение используется для описания постепен-
ных отказов, возникающих по ряду причин (не менее 6–8). Данное рас-
пределение также целесообразно применять на участке физического 
износа элементов;  

г) усеченное нормальное распределение получают из нормального 
распределения при 𝑡н < 2σ: 

𝐹(𝑡) = w

0, 𝑡 < 0,																																																														

1 −
𝐶

𝜎√2𝜋
7exp E

−(𝜏 − 𝑡н)'

2𝜎' F𝑑𝜏,
$

#

𝑡 ≥ 0,  

𝑓(𝑡) = y
0, 𝑡 < 0,																																												
𝐶

𝜎√2𝜋
expE

−(𝑡 − 𝑡н)'

2𝜎' F , 𝑡 ≥ 0,  

𝑃(𝑡) = w

0, 𝑡 < 0,																																																	

𝐶
𝜎√2𝜋

7expE
−(𝜏 − 𝑡н)'

2𝜎' F𝑑𝜏, 𝑡
$

#

≥ 0, 
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𝑄(𝑡) = w

0, 𝑡 < 0,																																																														

1 −
𝐶

𝜎√2𝜋
7expE

−(𝜏 − 𝑡н)'

2𝜎' F𝑑𝜏,
$

𝟎

𝑡 ≥ 0,

𝜆(𝑡) = expE
−(𝑡 − 𝑡н)'

2𝜎' F/7expE
−(𝜏 − 𝑡н)'

2𝜎' F𝑑𝜏,
$

𝟎

𝑡 ≥ 0, 

где tн, σ' – параметры распределения, поправочный множитель C опре-
деляется из условия 

𝐶
σ√2π

7 exp E−
(τ − 𝑡н)'

2σ' F𝑑τ
"

#
= 1. 

Параметры усеченного нормального распределения связаны с со-
ответствующими параметрами неусеченного нормального распределе-
ния по следующим формулам: 

𝑡н = 𝑡н{ + 𝐶& ∙ 𝜎}, 𝜎' = 𝜎'}}}} E1 −
𝐶& ∙ 𝑡н{
𝜎} F, 

где 𝑡н{ , 𝜎'}}}} – параметры нормального распределения, 

𝐶& =
𝐶
√2π

7 exp E−
(𝑡н∗)'

2(σ∗)'F
𝑑𝑡

"

#
. 

Для описания надежности серийных технических средств автома-
тизации неусеченное нормальное распределение применяется редко, 
поскольку для них 𝑡н/σ < 2 − 3; 

д) распределение Релея является частным случаем распределения 
Вейбулла при 𝑚 = 2 и 𝑘 = &

'9$
, где σ' – параметр распределения. Функ-

циональные показатели распределения Релея: 

𝐹(𝑡) = 1 − 𝑒/
$$
'9$ , 	 𝑓(𝑡) =

𝑡
σ'
𝑒/

$$
'9$ ,	
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𝑃(𝑡) = 𝑒/
$$
'9$ , 	 𝑄(𝑡) = 1 − 𝑒/

$$
'9$ , 	 λ(𝑡) =

𝑡
σ'
.	

Графики функциональных показателей надежности для распреде-
ления Релея приведены на рис. 1.10. 

Рис. 1.10. Показатели надежности для распределения Релея 

Среднее время безотказной работы при распределении Релея 
определяется по формуле 

𝑡н = σ ⋅ ~
π
2
; 

е) гамма-распределение:  

𝐹(𝑡) = 1 −O
(λ ⋅ 𝑡)!

𝑖!

5/&

!+#

𝑒/0$, 	 𝑓(𝑡) =
λ5 ⋅ 𝑡5/&

Γ(𝑘)
𝑒/0$,	

𝑃(𝑡) = O
(λ ⋅ 𝑡)!

𝑖!

5/&

!+#

𝑒/0$, 	 𝑄(𝑡) = 1 −O
(λ ⋅ 𝑡)!

𝑖!

5/&

!+#

𝑒/0$,	

λ(𝑡) =
λ5 ⋅ 𝑡5/&

Γ(𝑘)∑ (λ ⋅ 𝑡)!
𝑖!

5/&
!+#

, 	 𝑡н =
𝑘
λ
,	 σ' =

𝑘
λ'
,	

где k и λ – параметры распределения. Параметр λ определяет масштаб 
распределения, а параметр k – вид распределения. При k = 1 оно пре-
вращается в экспоненциальное распределение. Графики функцио-
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нальных показателей надежности для гамма-распределения показаны 
на рис. 1.11. 

Рис. 1.11. Показатели надежности для гамма-распределения 

Состав используемых в моделях надежности распределений 
можно расширить, используя операции суперпозиции и композиции 
стандартных распределений. 

Суперпозицией распределений называется операция вида 

𝑓(𝑡) = 𝐶& ⋅ 𝑓&(𝑡) + 𝐶' ⋅ 𝑓'(𝑡) + ⋯+ 𝐶: ⋅ 𝑓:(𝑡), (1.2) 

где 𝑓!(𝑡) – функция плотности стандартного распределения; 𝐶! – весо-
вые коэффициенты, удовлетворяющие условию 

O𝐶!

:

!+&

= 1. 

Если 𝑓!(𝑡) являются экспоненциальными функциями распределе-
ния вероятностей, т. е. 

𝑓!(𝑡) = λ!𝑒/0'$, 

то (1.2) называется гиперэкспоненциальным распределением. Интен-
сивность отказов этого распределения является монотонно убывающей 
функцией, которая изменяется от значения  
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λ# =O𝐶!

:

!+&

⋅ λ! 

при t = 0 до значения 

λ" = min
!
λ! 

при 𝑡	 → ∞. В частном случае при n = 2 для суперпозиции двух экспо-
ненциальных распределений справедливо: 

𝑓(𝑡) = 𝐶λ&𝑒/0%$ + (1 − 𝐶)λ'𝑒/0$$,	

𝑃(𝑡) = 𝐶𝑒/0%$ + (1 − 𝐶)𝑒/0$$,	

λ(𝑡) =
𝐶λ&𝑒/0%$ + (1 − 𝐶)λ'𝑒/0$$

𝐶𝑒/0%$ + (1 − 𝐶)𝑒/0$$
, 

λ(0) = 𝐶λ& + (1 − 𝐶)λ', 

𝑡н =
𝐶
λ&
+
1 − 𝐶
λ'

.	

При λ' ≫ λ& при 𝑡 → ∞	λ(𝑡) → λ& (рис. 1.12). Суперпозицию экс-
поненциальных распределений применяют для описания поведения 
элементов на участках приработки. 

Операция суперпозиции распределений позволяет получать мо-
дели безотказности элемента с немонотонными функциями интенсив-
ности отказов. Например, суперпозиция двух стандартных распределе-
ний: экспоненциального распределения и гамма-распределения с плот-
ностью вероятности отказа вида 

[𝑓(𝑡) = 𝐶λ&𝑒/0%$ + (1 − 𝐶)λ'
(λ' ⋅ 𝑡)5/&

(𝑘 − 1)!
𝑒/0$$]	

при значениях параметров λ& = 0,8, λ' = 0,9, 𝑘 = 4 и весовом коэффи-
циенте C = 0,2 представлена на рисунке 1.13 (кривые 1 и 2 – плотности 
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вероятности отказа слагаемых, кривая 3 – плотность вероятности от-
каза для суперпозиции). 

Рис. 1.12. Суперпозиция двух экспоненциальных распределений 

Рис. 1.13. Плотность вероятности отказа для суперпозиции 
распределений Эрланга 

Для построения модели надежности элемента с внезапными и по-
степенными отказами применяют суперпозицию экспоненциального 
и усеченного нормального распределений: 
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𝑓(𝑡) = 𝐶&λ&𝑒/0%$ + 𝐶'
𝐶

σ√2π
expE−

(𝑡 − 𝑡н)'

2σ' F ,	

где 𝐶& + 𝐶' = 1. 
Весовые коэффициенты 𝐶&, 𝐶' характеризуют частоты внезапных 

и постепенных отказов. 
Композицией распределений называется операция типа свертки 

над исходными функциями распределения. Операция композиции двух 
распределений имеет вид 

𝐹(𝑡) = 𝑃{𝑇& + 𝑇' < 𝑡} = 𝐹&(𝑡)∗𝐹'(𝑡) = 7 𝐹'(𝑡 − 𝑥)𝑑𝐹&(𝑥)
$

#
. 

Для композиции n распределений справедливо 

𝐹(𝑡) = 𝑃{𝑇& + 𝑇' +⋯+ 𝑇: < 𝑡} = 𝐹&(𝑡)∗𝐹'(𝑡)∗… 𝐹∗ :(𝑡) =	

= ∫ 𝑑𝐹!(𝑥!) ∫ 𝑑𝐹"(𝑥")
#$%!
&

#
& …∫ 𝐹'(𝑡 − 𝑥! −⋯− 𝑥'$!)𝑑𝐹'$!(𝑥')

#$%!$⋯$%"#!
& .	

В результате композиции некоторых стандартных распределений 
получают распределение того же типа, что и исходные функции распре-
деления. Например, многократная композиция гамма-распределений 
с одинаковыми параметрами масштаба и разными параметрами формы 
является гамма-распределением с тем же параметром масштаба, но па-
раметром формы, равным сумме параметров формы исходных распре-
делений. Однако композиция распределений Вейбулла не является рас-
пределением Вейбулла. 

Восстанавливаемый элемент после каждого j-го отказа ремонти-
руется обслуживающим персоналом в течение времени 𝑡)в – значения 
случайной величины 𝑇в – времени восстановления элемента. Процесс 
восстановления работоспособности можно разделить на последова-
тельные операции, поэтому время восстановления имеет вид 

𝑇в = 𝑇обн + 𝑇лок + 𝑇уст + 𝑇нал + 𝑇пп, (1.3) 
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где 𝑇обн – время обнаружения отказа; 𝑇лок – время локализации отказа; 
𝑇уст – время устранения отказа; 𝑇нал – время наладки аппаратуры после 
устранения отказа; 𝑇пп – время предпусковой проверки аппаратуры. 

К функциональным показателям ремонтопригодности относятся: 
– вероятность своевременного восстановления работоспособного

состояния элемента за время 𝑡в: 

𝑄(𝑡в) = 𝑃{𝑇в < 𝑡в}, 	 𝑡в ≥ 0, 

где 𝑇в – время восстановления элемента. Статистическая вероятность 
своевременного восстановления: 

𝑄0(𝑡в) =
𝑁(𝑡в)
𝑁

, 
где 𝑁(𝑡в) – количество восстановлений к моменту времени 𝑡в; 

– вероятность того, что восстановление не закончится к задан-
ному моменту времени 𝑡в, т. е. вероятность несвоевременного заверше-
ния ремонта: 

𝑃(𝑡в) = 𝑃{𝑇в > 𝑡в}, 	 𝑡в ≥ 0. 

Статистическая функция несвоевременного завершения ремонта: 

𝑃0(𝑡в) =
𝑁 − 𝑁(𝑡в)

𝑁
, 

где 𝑁 −𝑁(𝑡в) – количество невосстановленных к моменту времени 𝑡в 
изделий; 

– плотность вероятности восстановления отказавшего элемента:

𝑓(𝑡в) =
𝑑𝑄(𝑡в)
𝑑𝑡в

. 

Статистическая функция плотности: 

𝑓:(𝑡в) =
Δ𝑁/Δ𝑡в

𝑁
, 

где Δ𝑁 – количество восстановлений на малом интервале времени Δ𝑡в;  
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– интенсивность восстановления – условная плотность вероятно-
сти восстановления элемента в момент времени 𝑡в при условии, что до 
этого момента времени элемент еще не восстановлен: 

µ(𝑡в) =
𝑓(𝑡в)
𝑃(𝑡в)

. 

Статистическая интенсивность восстановления: 

µT(𝑡в) =
Δ𝑁/Δ𝑡в

𝑁 −𝑁(𝑡в)
. 

К числовым показателям ремонтопригодности относятся: 
1) среднее время восстановления – математическое ожидание слу-

чайной величины 𝑇в: 

𝑡нв = 𝑀[𝑇в] = 7 𝑡в
"

#
⋅ 𝑓(𝑡в)𝑑𝑡в = 7 𝑃(𝑡в)𝑑𝑡в

"

#
. 

Оценка среднего времени восстановления определяется по экспе-
риментальным значениям длительности ремонта N однородных эле-
ментов 𝑡)в, 𝑗 = 1,… ,𝑁: 

𝑡̂нв =
1
𝑁
O𝑡)в
*

)+&

; 

2) дисперсия и среднеквадратическое отклонение времени восста-
новления: 

σв' = 𝑀[(𝑇в − 𝑡̂нв)'] = 7 (𝑡в − 𝑡̂нв)'
"

#
⋅ 𝑓(𝑡в)𝑑𝑡в, 	 σв = Rσв'.	

Оценка дисперсии времени восстановления: 

𝜎Tв' =
1

𝑁 − 1
O>𝑡)в − 𝑡̂нвA

'
*

)+&

. 
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В моделях восстанавливаемости используются в основном следу-
ющие распределения времени восстановления: 

а) экспоненциальное распределение: 

𝐹(𝑡в) = 1 − 𝑒/E$в , 	 𝑓(𝑡в) = µ𝑒/E$в ,	

𝑃(𝑡в) = 𝑒/E$в , 	 𝑄(𝑡в) = 1 − 𝑒/E$в , 	 𝑡нв =
1
µ
,	 σв' =

1
µ'
,	

где µ(𝑡в) = µ = 𝑐𝑜𝑛𝑠𝑡 – параметр этого распределения (интенсивность 
восстановления).   

Графики зависимостей функциональных показателей ремонто-
пригодности от времени для экспоненциального распределения пред-
ставлены на рис. 1.14. 

Рис. 1.14. Графики функциональных показателей  
ремонтопригодности для экспоненциального распределения 

При исследовании ремонтопригодности технических средств ав-
томатизации поведение непрерывной случайной величины 𝑇в наиболее 
часто описывают экспоненциальным распределением. Экспоненциаль-
ное распределение применяют в том случае, когда основным слагае-
мым в (1.3) является время устранения отказа, а также при устранении 
отказа путем быстрой замены отказавшего элемента работоспособным; 
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б) равномерное распределение: 

𝐹(𝑡в) = w

0, 𝑡в < 𝑎,
𝑡в − 𝑎
𝑏 − 𝑎

,

1, 𝑡в > 𝑏,

𝑎 ≤ 𝑡в ≤ 𝑏, 

𝑓(𝑡в) = w

0, 𝑡в < 𝑎,
1

𝑏 − 𝑎
,

0, 𝑡в > 𝑏,

𝑎 ≤ 𝑡в ≤ 𝑏, 

𝑃(𝑡в) = w

0, 𝑡в < 𝑎,
𝑏 − 𝑡в

𝑏 − 𝑎
,

1, 𝑡в > 𝑏,

𝑎 ≤ 𝑡в ≤ 𝑏, 

𝑄(𝑡в) = w

0, 𝑡в < 𝑎,
𝑡в − 𝑎
𝑏 − 𝑎

,

1, 𝑡в > 𝑏,

𝑎 ≤ 𝑡в ≤ 𝑏, 

𝑡нв =
𝑎 + 𝑏
2

,	 σв' =
(𝑏 − 𝑎)'

12
; 

в) распределение Эрланга (гамма-распределение с целочислен-
ным параметром k): 

𝐹(𝑡в) = 1 −O
(µ ⋅ 𝑡в)!

𝑖!

5/&

!+#

𝑒/E$в , 	 𝑓(𝑡в) =
µ5 ⋅ (𝑡в)5/&

(𝑘 − 1)!
𝑒/E$в ,	

𝑃(𝑡в) = O
(µ ⋅ 𝑡в)!

𝑖!

5/&

!+#

𝑒/E$в , 	 𝑄(𝑡в) = 1 −O
(µ ⋅ 𝑡в)!

𝑖!

5/&

!+#

𝑒/E$в ,	

𝑡н =
𝑘
µ
,	 σ' =

𝑘
µ'
,	

где k > 0 и μ > 0 – параметры распределения. 
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Распределение Эрланга k-го порядка применяется в том случае, 
когда составляющие времени восстановления имеют экспоненциаль-
ное распределение с параметром μ. 

Пусть 𝑡) , 𝑗 = 1,2, … – наработки до первого отказа и между отка-
зами элемента. Последовательность {𝑡) , 𝑗 = 1,2, … } образует поток от-
казов элемента как разновидность потока случайных событий. Поток 
отказов можно задать следующими случайными величинами: числом 
отказов N на интервале (0, t) или совокупностью наработок между от-
казами 𝑡&, 𝑡', … для восстанавливаемого элемента (до отказов для невос-
станавливаемого элемента). 

Поток называется стационарным, если вероятность наступления 
определенного числа отказов на заданном интервале времени (или до 
заданной наработки) зависит только от величины этого интервала вре-
мени и не зависит от его расположения по оси времени. 

Поток называется ординарным, если вероятность наступления не 
менее двух отказов на малом промежутке времени есть величина более 
высокого порядка малости, чем величина этого промежутка. 

Поток отказов называется потоком без последействия, если веро-
ятность наступления некоторого числа отказов на заданном интервале 
времени не зависит от того, сколько отказов и в какие моменты времени 
наступило до рассматриваемого интервала. 

Поток отказов называется потоком с ограниченным последей-
ствием, если вероятность наступления некоторого числа отказов на за-
данном интервале времени зависит только от того, в какой момент вре-
мени наступил последний отказ перед рассматриваемым интервалом 
времени. 

Поток отказов, не обладающий свойствами отсутствия последей-
ствия и ограниченного последействия, называется потоком со слож-
ным последействием.   

Поток отказов, обладающий свойствами стационарности, орди-
нарности и отсутствия последействия, называется простейшим пото-
ком (стационарный пуассоновский поток). Для простейшего потока 
число отказов на интервале (0, t) имеет распределение Пуассона: 

𝑃*(𝑡) =
(λ ⋅ 𝑡)*

𝑁!
𝑒/0$, 
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где N – число отказов за время t, λ – интенсивность потока отказов, 
𝑃*(𝑡) – вероятность того, что за время t произойдет N отказов. 

Нестационарный пуассоновский поток отказов является потоком, 
обладающим свойствами ординарности и отсутствия последействия. 
Стационарный рекуррентный поток отказов является стационарным 
ординарным потоком с ограниченным последействием. Рекуррентный 
поток отказов является ординарным потоком с ограниченным после-
действием. Обобщенный пуассоновский поток отказов является пото-
ком, обладающим свойствами стационарности, ординарности и слож-
ным последействием. 

Стационарный и нестационарный пуассоновские потоки соответ-
ствуют марковской модели безотказности, рекуррентный и стационар-
ный рекуррентный потоки соответствуют полумарковской модели, 
а обобщенный пуассоновский поток – немарковской модели безотказ-
ности. 

Модель контроля и диагностирования характеризует полноту 
и достоверность контроля и диагностирования, какими ресурсами 
и в каком количестве обеспечиваются эти характеристики. Важность 
этой модели объясняется следующим: 

– контроль и диагностирование улучшают показатели надежно-
сти, поскольку позволяют снизить или исключить долю скрытых отка-
зов и улучшить показатели восстанавливаемости;   

– на организацию и проведение контроля и диагностирования за-
трачиваются определенные ресурсы (аппаратура, объем памяти, время 
функционирования), что снижает показатели надежности, потому что 
сама аппаратура контроля может отказать, увеличение времени функци-
онирования приводит к повышению вероятности отказа основной аппа-
ратуры, а вынужденное увеличение производительности устройств для 
компенсации потерь времени может привести к увеличению интенсив-
ности отказов. 

Модель контроля и диагностирования устанавливает зависимость 
ошибок первого и второго рода от выделенных ресурсов. Ошибкой пер-
вого рода является необнаружение возникших отказов, а ошибкой вто-
рого рода – выдача ложного сигнала об отказе элемента. 

При аппаратном контроле для оценки затрат на организацию 
встроенного контроля в основном используют следующие эмпириче-
ские модели: 



 32 

1) логарифмическая модель: 

δ =
1
𝑎
ln b

1
1 − α

c , 	 α = 1 − 𝑒/FG, 

где α – коэффициент полноты контроля, δ = 0)
0*

 – коэффициент относи-
тельных затрат аппаратуры на систему контроля, λ5 и λ# – интенсивно-
сти отказов контрольного и основного оборудования; a – параметр мо-
дели, который для различных устройств варьируется в диапазоне от 5 
до 10. Данная модель удовлетворительно согласуется с эксперимен-
тальными данными при α < 0,98; 

2) модель типа Вейбулла: 

δ = &
F
iln i &

&/H
kk

6
, 	 α = 1 − exp i−(𝑎δ)

%
&k, (1.4) 

где a и m – параметры модели. Параметр m обычно находится в диапа-
зоне от 0,8 до 1,2; 

3) степенная модель: 

[δ = α6, 	 α = δ
%
&, 	 𝑚 ≫ 1. (1.5) 

Эта модель хорошо описывает экспериментальные данные при 
α > 0,98. 

При программном контроле имеет место нелинейная зависимость 
коэффициента полноты тестирования α от длительности тестирова-
ния 𝑡5: 

𝑡5 = 𝑡5# ⋅ 𝑓(α), 	 α = φ(𝑡5), 	 𝑡5 ≤ 𝑡5#, (1.6) 

где 𝑡5# – длительность полного теста. Зависимости (1.6) аналогичны 
(1.4), (1.5), в которых δ = 𝐿/𝐿#, где L и L0 – длина неполного и полного 
тестов соответственно. Параметры a, m определяют методом наимень-
ших квадратов по экспериментальным данным. 

Самовосстанавливающаяся система «восстанавливаемый эле-
мент – обслуживающий персонал» часть времени находится в работо-
способном состоянии, а часть – в состоянии восстановления. Чем 
больше доля времени, в течение которого система работоспособна или 
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готова к выполнению своих функций, тем более надежной считается 
система. Степень работоспособности системы «восстанавливаемый 
элемент – обслуживающий персонал» характеризуется следующими 
комплексными показателями надежности, учитывающими безотказ-
ность и ремонтопригодность элемента и обслуживающего персонала: 

1. Функция готовности 𝐾г(𝑡)– вероятность того, что элемент ра-
ботоспособен в произвольный момент времени t.  

2. Если момент времени t достаточно удален от нуля и имеет место
установившийся или стационарный режим функционирования, то 
функция готовности превращается в коэффициент готовности 𝐾г, т. е. 

𝐾г = lim
$→"

𝐾г (𝑡). 

Коэффициент готовности – средняя доля времени, в течение ко-
торого система находится в работоспособном состоянии от общего вре-
мени ее эксплуатации: 

𝐾г =
𝑡н

𝑡н + 𝑡нв
, 	 0 ≤ 𝐾г ≤ 1. 

Если случайные величины T и Tв распределены по экспоненциаль-
ному закону, то коэффициент готовности равен 

𝐾г =
µ

λ + µ
. 

Серийные технические средства автоматизации имеют коэффици-
ент готовности 𝐾г ≈ 0,7÷0,9. При автоматизации ответственных объек-
тов, например пожаро- и взрывоопасных технологических процессов, 
стремятся обеспечить в основном за счет почти мгновенного восста-
новления значение коэффициента готовности 𝐾г ≈ 0,95÷0,99. 

Статистическая оценка коэффициента готовности определяется 
по результатам испытаний надежности N систем «восстанавливаемый 
элемент – обслуживающий персонал» или известным оценкам 𝑡н, 𝑡нв: 

𝑲� г =
𝑵(𝒕)
𝑵

=
𝒕Tн

𝒕Tн + 𝒕Tнв
,



 34 

где 𝑵(𝒕) – число работоспособных систем в «удаленный» момент вре-
мени t. 

3. Коэффициент простоя 𝐾п – вероятность того, что элемент 
находится в ремонте в удаленный момент времени, или средняя доля 
времени, в течение которого элемент находится в состоянии ремонта: 

𝐾п =
𝑡нв

𝑡н + 𝑡нв
= 1 − 𝐾г. 

4. Коэффициент оперативной готовности 𝐾ог(𝑡) – вероятность 
того, что элемент работоспособен в удаленный момент времени t0 и без-
отказно проработает на интервале времени (𝑡#, 𝑡# + 𝑡): 

𝐾ог(𝑡) = 𝐾г ⋅ 𝑃(𝑡#, 𝑡) =
𝑡нв

𝑡н + 𝑡нв
⋅ 𝑃(𝑡#, 𝑡), 

где 𝑃(𝑡#, 𝑡) – условная вероятность безотказной работы элемента на ин-
тервале (𝑡#, 𝑡# + 𝑡) при условии, что он работоспособен в момент вре-
мени 𝑡#. 

При экспоненциальном распределении времени безотказной ра-
боты T и времени восстановления Tв справедливо 

𝐾ог(𝑡) =
𝑡н

𝑡н + 𝑡нв
⋅ 𝑒/

$
$н =

λ
λ + µ

⋅ 𝑒/0$. 

5. Коэффициент контролируемой готовности 𝐾кг (используется, 
когда в элементе могут возникать скрытые отказы, т. е. система кон-
троля и диагностирования не идеальна) – вероятность того, что со-
гласно показаниям системы контроля и диагностирования элемент ра-
ботоспособен в произвольный момент времени периода применения по 
назначению: 

𝐾кг =
𝑡н + 𝑡со

𝑡н + 𝑡нв + 𝑡со
, 

где 𝑡со – среднее время пребывания в состоянии скрытого отказа. В ана-
логичных условиях коэффициент готовности 
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𝐾г =
𝑡н

𝑡н + 𝑡нв + 𝑡со
, 

следовательно, 𝐾кг ≥ 𝐾г. 
6. Вероятность безотказного применения 𝑃пр(𝑡) (используется

в том случае, когда в элементе могут возникать скрытые отказы) – 
условная вероятность того, что до наработки t скрытый отказ в эле-
менте не произойдет при условии, что его не было в начальный момент 
времени: 

𝐾ог(𝑡) = 𝐾кг ⋅ 𝑃пр(𝑡), 	 𝑃пр(𝑡) =
𝐾г ⋅ 𝑃(𝑡#, 𝑡)

𝐾кг
. 

7. Существуют изделия, которые периодически выводятся на
время 𝑡пр из эксплуатации, например, для профилактики. Это время вы-
нужденного «простоя» 𝑡пр изделия не связано непосредственно с его 
безотказностью и ремонтопригодностью и не учитывается при опреде-
лении 𝑡н и 𝑡нв, а следовательно, 𝐾г и 𝐾ог(𝑡). Если математическое ожи-
дание случайной величины 𝑡пр соизмеримо с 𝑡н и 𝑡нв, то безотказность 
и ремонтопригодность элемента с вынужденными простоями характе-
ризуется коэффициентом технического использования: 

𝐾ти =
𝑡н

𝑡н + 𝑡нв +𝑀Z𝑡пр[
, 

где 𝑀Z𝑡пр[ – математическое ожидание величины 𝑡пр. 
Методика расчета показателей надежности элемента зависит от 

вида моделей безотказности, восстанавливаемости, контроля и диагно-
стирования. В марковской модели надежности используются следую-
щие допущения: поток отказов элемента является простейшим с пара-
метром λ, время восстановления имеет экспоненциальное распределе-
ние с параметром μ. Предполагается, что контроль работоспособности 
является идеальным, т. е. все возникающие отказы мгновенно обнару-
живаются. При указанных допущениях элемент может находиться 
только в одном из двух состояний: 

1 – элемент работоспособен; 
2 – элемент неработоспособен (восстанавливается). 
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Граф возможных состояний и переходов элемента представлен на 
рис. 1.15. 

Рис. 1.15. Граф состояний элемента 

Пусть 𝑃&(𝑡) и 𝑃'(𝑡) – вероятности пребывания элемента в состоя-
ниях 1 и 2. Очевидно, что 𝑃&(𝑡) + 𝑃'(𝑡) = 1. Система дифференциаль-
ных уравнений Колмогорова в соответствии с графом состояний имеет 
вид 

y
MN%($)
M$

= −λ𝑃&(𝑡) + µ𝑃'(𝑡),
MN$($)
M$

= λ𝑃&(𝑡) − µ𝑃'(𝑡).
(1.7) 

Начальные условия для (1.7) следующие: 𝑃&(0) = 1, 𝑃'(0) = 0. 
Используя преобразование Лапласа, получим 

�
(𝑠 + λ)𝑃&(𝑠) − µ𝑃'(𝑠) = 1,
−λ𝑃&(𝑠) + (𝑠 + µ)𝑃'(𝑠) = 0, (1.8) 

где 𝑃&(𝑠), 𝑃'(𝑠) – изображения по Лапласу вероятностей 𝑃&(𝑡), 𝑃'(𝑡). 
Решая систему уравнений (1.8) методом Крамера, найдем изображение 
функции готовности: 

𝐾г(𝑠) =
�1 −𝜇
0 𝑠 + 𝜇�

�𝑠 + 𝜆 −𝜇
−𝜆 𝑠 + 𝜇�

=
𝑠 + µ

𝑠(𝑠 + λ + µ)
=

µ
λ + µ

⋅
1
𝑠
+

λ
λ + µ

⋅
1

𝑠 + λ + µ
. 
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С помощью обратного преобразования Лапласа получим ориги-
нал функции готовности: 

[𝐾г(𝑡) =
E
0OE

+ 0
0OE

𝑒/(0OE)$. (1.9) 

Если контроль работоспособности элемента не является идеаль-
ным, т. е. в элементе могут возникать скрытые отказы, доля которых 
составляет β = 	1	 − 	α, а время обнаружения скрытого отказа имеет 
экспоненциальное распределение с параметром(ν, то элемент может 
находиться только в одном из трех состояний: 

1 – элемент работоспособен; 
2 – элемент неработоспособен, отказ обнаружен и осуществляется 

восстановление работоспособности; 
3 – элемент неработоспособен, но отказ не обнаружен. 
Граф возможных состояний и переходов элемента имеет вид, при-

веденный на рис. 1.16. 

Рис. 1.16. Граф состояний элемента со скрытыми отказами 

Система дифференциальных уравнений Колмогорова имеет вид: 

⎩
⎪
⎨

⎪
⎧
MN%($)
M$

= −λ𝑃&(𝑡) + µ𝑃'(𝑡),																
MN$($)
M$

= αλ𝑃&(𝑡) − µ𝑃'(𝑡) + ν𝑃P(𝑡),
MN,($)
M$

= βλ𝑃&(𝑡) − ν𝑃P(𝑡),																		
𝑃&(𝑡) + 𝑃'(𝑡) + 𝑃P(𝑡) = 1.																

 (1.10)	
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Начальные условия для (1.10) следующие: 𝑃&(0) = 1, 𝑃'(0) = 0, 
𝑃P(0) = 0. 

Стационарные вероятности состояний 𝑝! , 𝑖 = 1,2,3 находят из си-
стемы алгебраических уравнений Колмогорова, получаемой из (1.7): 

w

−λ𝑝& + µ𝑝' = 0,												
αλ𝑝& − µ𝑝' + ν𝑝P = 0,
βλ𝑝& − ν𝑝P = 0,													
𝑝& + 𝑝' + 𝑝P = 1.										

(1.11)	

Решая систему уравнений (1.11), получим коэффициент готовно-
сти и коэффициент контролируемой готовности: 

𝐾г = 𝑝& =
1

1 + λ
µ +

βλ
ν
,	

𝐾кг = 𝑝& + 𝑝P =
1 + βλν

1 + λ
µ +

βλ
ν
.	

Вероятность безотказного применения: 

𝑃пр(𝑡) =
𝐾г ⋅ 𝑒/0$

𝐾кг
=

𝑒/0$

1 + βλν
. 

Функциональные и числовые показатели надежности можно 
представить в векторной форме: 

𝐵(𝑡) = [𝑄(𝑡), 𝑃(𝑡), 𝑓(𝑡), λ(𝑡), µ(𝑡), 𝐾г(𝑡), … ],	

𝑎 = Z𝑡н, σ', 𝑡,, 𝑃(𝑡.), 𝑡нв, σв', 𝐾г, … [,	

при этом каждая составляющая вектора 𝐵(𝑡) зависит от одного или бо-
лее числовых показателей, т. е. 𝐵(𝑡, 𝑎), 𝑡 ≥ 0. 

При определении единичных и комплексных показателей надеж-
ности технических элементов возникают два типа задач: 



39 

1. Определение показателя надежности a, основанное на решении
уравнения 

𝐵(𝑡#, 𝑎) = 𝐵#, (1.12) 

где 𝑡# – заданный момент времени; 𝐵# – значение показателя 𝐵(𝑡#, 𝑎) 
в момент 𝑡#. 

2. Определение значения 𝑡, или 𝑡-г   при известных законе распре-
деления 𝐵(𝑡, 𝑎), значениях 𝐵# и 𝑎#, основанное на решении уравнения 

𝐵(𝑡, 𝑎#) = 𝐵#. (1.13) 

Методика решения задач по данной теме заключается в следую-
щем: 

1) проанализировать условия задачи, выявить заданные величины
и дополнительные условия для нахождения параметров 𝐵# и 𝑎#; 

2) составить математическое описание задачи в виде (1.12) или
(1.13); 

3) решить уравнение (1.12) или (1.13) относительно a или t;
4) проверить правильность решения.

1.2. Задачи  по  теме  «Определение  единичных  
показателей  надежности  технических  элементов» 

Задача 1. Вероятность отказа технического элемента к моменту 
времени 200 ч равна 0,6. Определить среднюю наработку до отказа эле-
мента. Каким образом необходимо изменить среднюю наработку до от-
каза элемента, чтобы уменьшить вероятность отказа за это же время 
с 0,6 до 0,4? 

Задача 2. К моменту времени 300 ч из тысячи одновременно 
включенных однотипных элементов отказало 400 элементов. Найти 
оценки средней наработки до отказа и интенсивности отказов элемента. 

Задача 3. В процессе наблюдений за испытаниями 10000 однотип-
ных невосстанавливаемых элементов на интервале времени (495, 505) ч 
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зафиксировано 6 отказов. Определить среднюю наработку до отказа 
и гамма-ресурс элемента при 𝑃- = 0,9. 

Задача 4. Интенсивность восстановления технического элемента 
равна μ = 0,05 ч⁻¹, его гамма-ресурс составляет 700 ч при гарантирован-
ном уровне надежности 0,6. Определить среднюю наработку до отказа 
и плотность вероятности восстановления элемента при t = 380 ч. 

Задача 5. Вероятность безотказной работы элемента изменилась 
в 1,1 раза за время его эксплуатации 200 ч. Определить гамма-ресурс 
элемента при 𝑃-	= 0,22. 

Задача 6. Плотность вероятности отказа изменилась в 1,5 раза за 
время эксплуатации элемента, равное 300 ч. Определить среднюю нара-
ботку до отказа элемента и вероятность его отказа в момент времени 
120 ч. 

Задача 7. При испытании большого числа однотипных элементов 
в момент времени 𝑡# было исправно 500 элементов, а на малом интер-
вале времени (𝑡#, 𝑡# + 5) отказало 2 элемента. Определить оценки сред-
ней наработки до отказа элемента и вероятности его отказа в момент 
времени 1000 ч. 

Задача 8. При испытании 1000 однотипных элементов на интер-
вале времени (295, 305) ч отказало 5 элементов. Определить среднюю 
наработку до отказа и гамма-ресурс при 𝑃- = 0,9. 

Задача 9. Наработка элемента до отказа описывается усеченным 
нормальным распределением с параметрами 𝑡н= 4000 ч, 𝜎' = 10⁶ ч². 
Определить вероятность безотказной работы, интенсивность отказов 
и плотность вероятности отказа для t = 2000 ч. 

Задача 10. Наработка изделия до отказа описывается законом 
Релея. Определить вероятность безотказной работы, интенсивность от-
казов и плотность вероятности отказа для t = 1000 ч, если параметр рас-
пределения 𝜎' = 10⁶ ч². 

Задача 11. Время безотказной работы изделия подчиняется закону 
Вейбулла с параметрами k = 10⁻⁴ ч⁻¹, m = 1,5. Определить вероятность 
безотказной работы, интенсивность отказов и плотность вероятности 
отказа для t = 100 ч. 

Задача 12. За наблюдаемый период эксплуатации в изделии было 
зафиксировано 8 отказов, время восстановления которых составило 12, 
23, 15, 9, 17, 28, 25, 31 мин. Найти оценку среднего времени восстанов-
ления изделия. 
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Задача 13. Функция надежности устройства, для которого спра-

ведливо распределение Релея, т. е. 𝑃(𝑡) = 	 𝑒/
#$

$-$, изменилась в 1,5 раза 
за время 1000 ч. Определить параметр данного распределения. 

Задача 14. В результате анализа данных об отказах аппаратуры 
получена зависимость 𝑓(𝑡) = 	𝐶&𝜆&𝑒/Q%$ +	𝐶'𝜆'𝑒/Q$$. Определить ве-
роятность безотказной работы, интенсивность отказов и среднюю нара-
ботку до отказа. 

Задача 15. Плотность вероятности отказа аппаратуры, полученная 
в результате анализа данных об ее отказах, имеет следующий вид: 

𝑓(𝑡) = 	2𝑒/$(1	 −	𝑒/$). 
Определить вероятность отказа, среднюю наработку до отказа 

и интенсивность отказов при t = 700 часов. 
Задача 16. В результате наблюдений получено сто значений нара-

ботки на отказ насоса 𝑡) , 𝑗	 = 	1, … , 𝑛, 𝑛	 = 	100 (табл. 1.1).  

Таблица 1.1 
Результаты наблюдений наработки на отказ 

№ 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч 

1 314 21 77 41 35 61 68 81 25 
2 249 22 16 42 367 62 18 82 54 
3 145 23 95 43 224 63 47 83 16 
4 107 24 12 44 128 64 7 84 7 
5 85 25 107 45 206 65 8 85 12 
6 56 26 225 46 146 66 209 86 70 
7 34 27 16 47 79 67 46 87 187 
8 22 28 28 48 37 68 5 88 78 
9 17 29 32 49 41 69 18 89 154 

10 8 30 1 50 63 70 149 90 189 
11 8 31 133 51 31 71 32 91 169 
12 216 32 17 52 48 72 62 92 49 
13 6 13 29 53 6 73 70 93 105 
14 26 34 15 54 108 74 125 94 78 
15 8 35 19 55 27 75 144 95 101 
16 6 36 18 56 43 76 55 96 18 
17 49 37 64 57 38 77 4 97 25 
18 165 38 294 58 61 78 14 98 27 
19 9 39 21 59 4 79 34 99 6 
20 370 40 21 60 28 80 368 100 25 
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Выполнить математическую обработку результатов наблюдений 
для определения оценок числовых параметров и вида закона распреде-
ления случайной величины 𝑡) , 𝑗	 = 	1, … , 100. 

Решение. Поскольку минимальное и максимальное значения ре-
зультатов наблюдений (табл. 1.1) равны 𝑡6!:1 ч, 𝑡6FR= 370 ч, то диапа-
зон значений случайной величины 𝑡) , 𝑗	 = 	1, … , 100, составляет 𝑡6FR −
	𝑡6!:370 − 1 = 369 ч. Этот диапазон разбиваем на равные интервалы 
величиной 

∆𝑡	 = $&.//$&'0
&	O	',P& UV:

. (1.14) 

Если при разбиении на интервалы равной длины, определенной 
по формуле (1.14), количество значений случайной величины 𝑡) в ин-
тервале оказывается меньше 10, то осуществляют разбиение диапазона 
изменения на интервалы разной длины. 

Для каждого интервала определим: количество значений случай-
ной величины 𝑛!, попавших в интервал; относительную частоту (эмпи-
рическую вероятность): 𝑃! =

:'
:
= :'

&##
; середины каждого интервала 𝑡!; 

произведения 𝑃!𝑡!; эмпирическую плотность вероятности :'
:	∆$

; произве-
дения 𝑃!(𝑡! − 𝑡̂н)'. Результаты расчета запишем в табл. 1.2. 
 

Таблица 1.2 
Результаты обработки 

№  
интервала 

Интер-
вал 

𝑛! 𝑃! 𝑡! 𝑃!	𝑡! 𝑛!
𝑛	∆𝑡

 𝑃!	(𝑡! − 𝑡̂н)' 

1 0–10 15 0,15 5 0,75 0,015 712,08 
2 10–20 14 0,14 15 2,1 0,014 485,69 
3 20–30 12 0,12 25 3,0 0,012 286,95 
4 30–50 15 0,15 40 6,0 0,0075 172,38 
5 50–80 14 0,14 65 9,1 0,0047 11,09 
6 80–110 7 0,07 95 6,65 0,0023 31,16 
7 110–150 7 0,07 130 9,1 0,0018 220,3 
8 150–190 5 0,05 170 8,5 0,0013 461,76 
9 190–250 6 0,06 220 13,2 0,001 1280,71 
10 250–370 5 0,05 310 15,5 0,0004 2787,16 
Ʃ  100 1,0  73,9  6449,28 
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Оценка средней наработки до отказа определяется по значениям 
𝑃!𝑡!из табл. 1.2: 

𝑡̂н = ∑ 𝑃!	𝑡!&#
!+&  = 73,9 ч. 

Оценка дисперсии равна 

𝜎T' = ∑ [𝑃!	(𝑡! − 𝑡̂н)']&#
!+& = ∑ [𝑃!	(𝑡! − 73,9)']&#

!+&  = 6449,28 ч². 

Среднеквадратическое отклонение: 

𝜎T = 	√𝜎T' =	√6449,28 = 80,3 ч. 

Среднеквадратическая ошибка определения оценки средней нара-
ботки до отказа: 

∆𝑡̂н =
XY
√:
= [#.P

√&##
 = 8 ч. 

Среднеквадратическая ошибка определения оценки среднеквад-
ратического отклонения: 

∆𝜎T = XY
√':

= [#.P
√'##

 ≈ 5,7 ч. 

Следовательно, 𝑡̂н = (73,9±8) ч. 
На гистограмме распределения (рис. 1.17) по оси абсцисс откла-

дывают интервалы разбиения случайной величины 𝑡), а по оси орди-
нат – значения статистической плотности вероятности :'

:	∆$
. По виду ги-

стограммы выдвигают гипотезу о том, что исследуемая случайная ве-
личина (наработка на отказ насоса) имеет экспоненциальное распреде-
ление. О справедливости этого предположения также свидетельствуют 
близкие значения оценки средней наработки до отказа 𝑡̂н и оценки сред-
неквадратического отклонения 𝜎T. 

Принимая в качестве математического ожидания наработки на от-
каз его оценку 𝑡̂н  = 73,9 ч, получим 

𝑓(𝑡) = 𝜆𝑒/Q$, 
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где 𝜆: = &
$]н

 = 0,0135 ч⁻¹, т. е. 

𝑓(𝑡) = 0,0135𝑒/#,#&P^$. 

Рис. 1.19. Гистограмма наработки на отказ и плотность 
вероятности 

Для проверки соответствия эмпирического и гипотетического за-
конов распределения, т. е. справедливости гипотезы об экспоненциаль-
ном законе распределения наработки на отказ насоса, используют кри-
терий χ² (критерий согласия Пирсона): 

𝜒' =O
[𝑛! − 𝑛𝑃∗(𝑡!)]'

𝑛𝑃∗(𝑡!)
,

5

!+&

 

где k – количество интервалов группировки статистического распреде-
ления (в примере k = 10), 𝑃∗(𝑡!) – вероятность попадания случайной 
величины в i-й интервал. 

Результаты расчета вероятности в соответствии с проверяемым за-
коном распределения: 

𝑃∗(𝑡! < 	𝑡	 < 	 𝑡!O&) = 	𝐹(𝑡!O&) − 	𝐹(𝑡!), 
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где 𝐹(𝑡!) – функция распределения на i-м интервале. Значения 𝑃∗(𝑡+) 
а также статистика критерия согласия Пирсона приведены в табл. 1.3. 
 

Таблица 1.3 
Результаты расчета статистики критерия согласия Пирсона 

№  𝑡+ 𝑒$&.&!-.#$ 𝑃∗(𝑡+) 𝑛𝑃∗(𝑡+) [𝑛+ − 𝑛𝑃∗(𝑡+)	]"

𝑛𝑃∗(𝑡+)
 

1 0 1 – – – 
2 10 0,874 0,126 12,6 0,457 
3 20 0,763 0,111 11,1 0,758 
4 30 0,667 0,096 9,6 0,600 
5 50 0,509 0,158 15,8 0,041 
6 80 0,340 0,169 16,9 0,498 
7 110 0,227 0,113 11,3 1,636 
8 150 0,132 0,095 9,5 0,658 
9 190 0,077 0,055 5,5 0,045 

10 250 0,034 0,043 4,3 0,672 
11 370 0,007 0,027 2,7 1,959 
Ʃ     7,324 

 
Распределение χ² зависит от числа степеней свободы 𝑓 = 𝑘 −𝑚 − 1, 

где m – количество параметров, оцениваемых по выборке. Для экспо-
ненциального распределения m = 1, а для нормального распределения 
m = 2. 

Табулированные значения χ²-распределения в зависимости от f и P 
приведены в прил. 2. По рассчитанному значению χ² = 7,324 и числу 
степеней свободы f = 10 − 2 = 8 из прил. 2 находим вероятность P = 0,55. 
Полученное значение вероятности свидетельствует о том, что гипотеза 
об экспоненциальном законе распределения времени безотказной ра-
боты подтверждается критерием согласия Пирсона. 

К наиболее простым и распространенным критериям проверки ги-
потезы о виде закона распределения относится также критерий Колмо-
горова.  

Статистика Колмогорова представляет собой максимальное от-
клонение эмпирической функции распределения 𝐹0(𝑡) от гипотетиче-
ской (т. е. соответствующей теоретической) функции распределения 
𝐹(𝑡): 

𝐷	 = max§𝐹0(𝑡) − 𝐹(𝑡)§, 
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где теоретическая функция распределения (экспоненциальная) имеет 
вид 

𝐹(𝑡) = 1 − 𝑒/Q$ = 1 − 𝑒/#,#&P^$. 

Результаты расчета величины D приведены в табл. 1.4. Из табл. 1.4 
видно, что D = 0,077. Определяем величину 

𝜆 = 𝐷√𝑛 = 0,077 · 10 = 0,77 

и из прил. 3 находим вероятность 𝑃(𝜆) = 0,6. 
Следовательно, гипотеза об экспоненциальном законе распреде-

ления наработки на отказ насоса подтверждается также и критерием 
Колмогорова, поскольку найденное значение вероятности не мало. 

Таблица 1.4 
Результаты расчета статистики Колмогорова 

№ 
интер-
вала 

интервал 𝑛! 𝐹0(𝑡) =O
𝑛!
𝑛	

𝐹(𝑡) §𝐹0(𝑡) − 𝐹(𝑡)§

1 0–10 15 0,15 0,126 0,024 
2 10–20 14 0,29 0,237 0,053 
3 20–30 12 0,41 0,333 0,077 
4 30–50 15 0,56 0,491 0,069 
5 50–80 14 0,7 0,660 0,04 
6 80–110 7 0,77 0,773 0,003 
7 110–150 7 0,84 0,868 0,028 
8 150–190 5 0,89 0,923 0,033 
9 190–250 6 0,95 0,966 0,016 
10 250–370 5 1,0 0,993 0,007 
D 0,077 

Задача 17. Выполнить математическую обработку статистиче-
ских данных по пробегу (наработке на отказ) полимеризатора 𝑡), 
𝑗 = 1,… , 𝑛, 𝑛 = 105 (табл. 1.5), т. е. определить закон распределения 
случайной величины и ее числовые характеристики.  
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Таблица 1.5 
Статистические данные по наработке на отказ 

№ 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч № 
набл. 

𝑡), ч 

1 134 22 121 43 149 64 137 85 71 
2 122 23 94 44 124 65 208 86 143 
3 165 24 124 45 142 66 104 87 107 
4 151 25 105 46 110 67 88 88 79 
5 162 26 133 47 114 68 105 89 120 
6 159 27 98 48 141 69 118 90 90 
7 84 28 167 49 226 70 110 91 111 
8 91 29 153 50 130 71 131 92 126 
9 134 30 133 51 105 72 112 93 144 
10 156 31 194 52 120 73 107 94 126 
11 132 32 104 53 195 74 161 95 112 
12 92 13 101 54 110 75 112 96 146 
13 141 34 158 55 143 76 209 97 149 
14 121 35 121 56 127 77 73 98 151 
15 58 36 147 57 101 78 161 99 111 
16 124 37 155 58 113 79 64 100 116 
17 44 38 75 59 74 80 179 101 125 
18 109 39 194 60 63 81 138 102 162 
19 106 40 99 61 118 82 143 103 190 
20 103 41 161 62 136 83 115 104 124 
21 127 42 106 63 148 84 209 105 138 

Примечание: при решении данной задачи принимаем гипотезу о 
нормальном законе распределения наработки на отказ. 

Задача 18. Из 50 одновременно испытываемых изделий за первые 
500 ч непрерывной работы получены следующие данные: 

– на интервале от 0 до 100 ч отказало 0 изделий;
– на интервале от 100 до 200 ч отказало 1 изделие;
– на интервале от 200 до 300 ч отказало 0 изделий;
– на интервале от 300 до 400 ч отказало 0 изделий;
– на интервале от 400 до 500 ч отказало 2 изделия.
Определить вероятность безотказной работы изделий в течение

500 ч. 
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Задача 19. В процессе испытаний 1000 невосстанавливаемых изде-
лий с интервалом 100 ч осуществлялась фиксация количества отказов на 
соответствующем интервале. Данные об отказах приведены в табл. 1.6. 
Определить вероятность безотказной работы изделий в течение 1000 ч 
и среднюю наработку на отказ. 
 

Таблица 1.6 
Данные об отказах изделий 

№ интервала интервал 𝑛! 
1 0–100 30 
2 100–200 15 
3 200–300 12 
4 300–400 15 
5 400–500 24 
6 500–600 17 
7 600–700 10 
8 700–800 15 
9 800–900 26 
10 900–1000 25 

 
Задача 20. За время наблюдений за работой трех однотипных из-

делий зафиксировано 5 отказов первого изделия, 7 отказов второго, 
10 отказов третьего изделия. Наработка на отказ первого изделия – 
5000 ч, второго – 6500 ч, третьего – 4900 ч. Определить среднюю нара-
ботку на отказ. 

Решение. Суммарное время работы трех изделий 

𝑡_ = 5000 + 6500 + 4900 = 16400 ч. 

Суммарное количество отказов: n = 5 + 7 + 10 = 22. 
Средняя наработка на отказ 

𝑡̂н =
$Ʃ
:
= &`a##

''
 ≈ 745 ч. 

Задача 21. Наработка на отказ изделия распределена по закону 
Вейбулла с параметрами k = 10−4 ч⁻¹, m = 1,4, время работы – 200 ч. 
Определить вероятность безотказной работы, плотность вероятности 
отказа, а также среднюю наработку на отказ. 
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Задача 22. Наработка на отказ изделия подчинена закону распре-
деления Релея с параметром 𝜎 = 600 ч. Определить вероятность безот-
казной работы, плотность вероятности отказа, интенсивность отказа 
изделия для t = 800 ч, а также среднюю наработку на отказ. 

Задача 23. Среднее число отказов восстанавливаемого устройства 
за время t = 1000 ч равно 𝑛ср = 10. Требуется определить вероятность 
того, что за время работы 200 ч возникнет 2, 3 отказа. 

Решение. Интенсивность потока отказов следующая: 

𝜆: = :ср
$
= &#

&###
= 0,01	ч/&. 

Вероятность того, что за время t ч возникнет K отказов согласно 
распределению Пуассона 

𝑃b(𝑡) =
(λ ⋅ 𝑡)b

𝐾!
𝑒/0$. 

Следовательно, вероятность возникновения двух отказов за время 
работы 200 ч: 

𝑃b+'(𝑡) =
(0,01 ⋅ 200)'

1 ⋅ 2
𝑒/#,#&⋅'## =

2'

2
𝑒/' = 0,27. 

Вероятность того, что за время работы 200 ч произойдет 3 отказа: 

𝑃b+P(𝑡) =
(0,01 ⋅ 200)P

1 ⋅ 2 ⋅ 3
𝑒/#,#&⋅'## =

2P

6
𝑒/' = 0,18. 

Задача 24. Наработка на отказ изделия распределена по усечен-
ному нормальному закону с параметрами 𝑡н = 5000 ч, 𝜎 = 2000 ч. Опре-
делить вероятность безотказной работы изделия для t = 4000 ч. 

Примечание. Вероятность безотказной работы, согласно усечен-
ному нормальному распределению, имеет вид 

𝑃(𝑡) =
𝐹# i

𝑡н − 𝑡
σ k

𝐹# i
𝑡н
σk

, 



50 

где 𝐹#(𝑡) – табулированный интеграл Лапласа, значения которого при-
ведены в прил. 4. 

Задача 25. Плотность распределения времени безотказной работы 
изделия имеет вид 

𝑓(𝑡) = 2λ𝑒/0$>1 − 𝑒/0$A. 

Определить вероятность отказа, интенсивность отказа и среднюю 
наработку до отказа изделия. 

Задача 26. Плотность распределения наработки до отказа имеет 
вид 

𝑓(𝑡) = 𝐶&λ&𝑒/0%$ + 𝐶'λ'𝑒/0$$. 

Определить аналитическое выражение для вероятности безотказ-
ной работы, интенсивности отказов и средней наработки до отказа. 

Задача 27. Доказать, что если плотность распределения наработки 
между отказами имеет вид  

𝑓(𝑡) = 𝐶&λ&𝑒/0%$ + 𝐶'λ'𝑒/0$$, 

то существует установившееся значение интенсивности отказов, рав-
ное min(λ&, λ'). 

Задача 28. Интенсивность отказов объекта управления имеет вид 

λ(𝑡) =
𝑘'𝑡
1 + 𝑘𝑡

. 
Требуется определить вероятность безотказной работы, плотность 

распределения наработки на отказ и среднюю наработку до отказа объ-
екта управления. 

Задача 29. Вероятность отказа изделия на интервале времени T 
равна p. Известно, что при t < T изделие не отказало. Необходимо опре-
делить вероятность P того, что изделие откажет на оставшемся проме-
жутке времени. 

Решение. Вероятность p возникновения отказа за время T: 

𝑝 =
𝑡
𝑇
𝑝 + b1 −

𝑡
𝑇
𝑝c ⋅ 𝑃, 
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где $
d
𝑝 – вероятность отказа за время t; 1 − $

d
𝑝 – вероятность отсутствия 

отказа за время t; i1 − $
d
𝑝k ⋅ 𝑃 – вероятность отказа за оставшееся время. 

Следовательно, искомая вероятность 

𝑃 =
i1 − 𝑡

𝑇k 𝑝

1 − 𝑡
𝑇 𝑝

. 

Задача 30. Вероятность превышения номинального напряжения 
в электрической цепи равна 𝑞&. При повышенном напряжении вероят-
ность отказа прибора, являющегося потребителем электрического тока, 
равна 𝑞'. Определить вероятность отказа прибора вследствие повыше-
ния напряжения. 

Задача 31. Построить графики зависимости 𝑄(𝑡), 𝑓(𝑡), λ(𝑡) рас-
пределения Вейбулла с параметрами k = 0,00015 ч⁻¹, m = 0,5; 1; 2; 3. 
Сравнить полученные зависимости. 

1.3. Задачи  по  теме  «Определение  комплексных  
показателей  надежности  восстанавливаемых  
элементов» 

Задача 1. Интенсивность отказов технического элемента равна 
0,005 ч⁻¹, а его среднее время восстановления составляет 50 ч. Опреде-
лить коэффициент готовности и коэффициент оперативной готовности 
при t = 100 ч и t = 300 ч. 

Задача 2. Технический элемент характеризуется средней наработ-
кой до отказа 200 ч и средним временем восстановления 70 ч. Найти 
коэффициент простоя и гамма-ресурс готовности при 𝐾- = 0,5. 

Задача 3. Среднее время простоя технического элемента состав-
ляет 30 ч, среднее время восстановления – 50 ч, а коэффициент готов-
ности – 0,6. Определить коэффициент технического использования, 
среднюю наработку до отказа и вероятность отказа элемента к моменту 
времени 100 ч. 
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Задача 4. Коэффициент простоя технического элемента равен 
0,35, коэффициент технического использования – 0,55, а интенсивность 
восстановления – 0,02 ч⁻¹. Требуется определить среднее время простоя 
элемента, его гамма-ресурс при 𝑃- = 0,7 и коэффициент оперативной 
готовности при времени прогноза 100 ч. 

Задача 5. Коэффициент оперативной готовности элемента равен 
0,7 при t = 100 ч, а его гамма-ресурс составляет 80 ча при 𝑃- = 0,8. Тре-
буется определить среднюю наработку до отказа, среднее время восста-
новления и коэффициент простоя. 

Задача 6. Система «восстанавливаемый элемент – ремонтный 
персонал» характеризуется коэффициентом простоя 0,2 и коэффициен-
том оперативной готовности 0,2 при t = 400 ч. Определить интенсивно-
сти отказов и восстановления, а также коэффициент готовности эле-
мента. 

Задача 7. В результате испытаний 50 восстанавливаемых изделий 
в течение 1000 ч получено значение интенсивности отказов 𝜆: = 10⁻⁴ ч⁻¹. 
Закон распределения наработки на отказ – экспоненциальный. Случай-
ная величина – время восстановления в ходе испытаний принимает зна-
чение 𝑡&в = 2 ч с вероятностью P₁ = 0,7, значение 𝑡'в= 2 ч с вероятностью 
P₂ = 0,3 и значение 𝑡Pв = 3,2 ч с вероятностью P₃ = 0,4. Требуется опре-
делить вероятность безотказной работы в течение 1000 ч, среднюю 
наработку на отказ, среднее время восстановления и коэффициент го-
товности.   

Примечание. Для определения среднего времени восстановления 
используем формулу 

𝑡̂нв =O𝑡!в𝑃!

P

!+&

. 

Задача 8. К началу наблюдений за отказами приемник проработал 
450 ч. К концу наблюдения наработка на отказ составила 2827 ч. 
За время наблюдений зафиксировано 5 отказов, среднее время восста-
новления составило 1,2 ч. Определить среднюю наработку на отказ 
и коэффициент готовности приемника. 

Задача 9. При эксплуатации изделия в течение одного года его 
суммарная наработка на отказ составила 7500 ч, суммарное время 



восстановления – 420 ч, суммарное время технического обслужива-
ния – 840 ч. Определить коэффициент технического использования. 

Задача 10. В табл. 1.7 приведены данные по количеству отказов, 
значения наработки между соседними отказами и времени восстанов-
ления по каждому из пяти экземпляров аппаратуры. Требуется опреде-
лить среднюю наработку на отказ и коэффициент готовности одного эк-
земпляра. 

Таблица 1.7 
Данные по наработке на отказ и времени восстановления 

№ экзем-
пляра 

𝑡) 𝑡)в 𝑡) 𝑡)в 𝑡) 𝑡)в 𝑡) 𝑡)в 𝑡) 𝑡)в 

1 21 0,8 44 0,95 49 0,7 32 1,25 42 0,77 
2 36 0,9 56 0,7 53 1,2 28 1 21 0,85 
3 45 1,1 61 1,2 47 0,99 41 0,99 35 1,15 
4 55 1,2 34 0,92 57 1,11 51 1,2 55 0,99 
5 41 1,0 28 1,1 39 0,88 23 1,1 33 1,1 
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2 . ОПРЕДЕЛЕНИЕ  ПОКАЗАТЕЛЕЙ  НАДЕЖНОСТИ  
НЕРЕЗЕРВИРОВАННЫХ  СИСТЕМ  

2.1. Методические  указания  по  теоретической  части  

Система состоит из двух или более элементов, взаимодействую-
щих между собой для достижения заданной цели. Основным называ-
ется такой элемент системы, отказ которого приводит к отказу всей си-
стемы. Избыточным или резервным называется элемент, отказ кото-
рого не приводит к отказу системы. 

Система, состоящая только из основных элементов, называется 
нерезервированной или безызбыточной. Система, содержащая избы-
точные элементы, называется резервированной или избыточной. 

При исследовании надежности систем наглядным является графи-
ческий метод, основанный на построении структурной схемы надежно-
сти. Структурной схемой при расчете надежности называется графиче-
ское отображение элементов системы, позволяющее однозначно опре-
делить состояние системы (работоспособное или неработоспособное) 
по состоянию элементов. Элементы системы на структурной надеж-
ностной схеме изображаются прямоугольниками, на которых указыва-
ются их номера или определяющие показатели надежности, например 
P(t), λ, 𝑡н и т. д. На такой схеме на линиях связи не проставляются 
стрелки, так как формально здесь нет передачи сигналов. 

Структурная надежностная схема нерезервированной системы 
представляет собой последовательное соединение элементов (рис. 2.1). 
 

 
Рис. 2.1. Структурная надежностная схема нерезервированной  

системы из m элементов 

Примером безызбыточной системы является ПИ-регулятор с пе-
редаточной функцией 
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𝑊(𝑝) =
𝑦(𝑝)
𝑥(𝑝)

= 𝐶& +
𝐶#
𝑝
, 

где x, y – входной и выходной сигналы регулятора, C₀ и C₁ – параметры 
настройки. Данный регулятор состоит из трех элементов: усилителя П, 
интегратора И, сумматора Σ (рис. 2.2). 
 

 
Рис. 2.2. ПИ-регулятор как безызбыточная система 

Отказ типа «обрыв» или «короткое замыкание» любого элемента 
ведет к отказу регулятора, превращая его из ПИ-регулятора в И- или  
П-регулятор, или к разрыву цепи x–y. Следовательно, ПИ-регулятор яв-
ляется нерезервированной системой, и его структурная надежностная 
схема представляет собой последовательное соединение трех элемен-
тов (рис. 2.3). Данный пример свидетельствует, что структурная надеж-
ностная схема может отличаться от функциональной схемы системы. 
 

 
Рис. 2.3. Структурная надежностная схема ПИ-регулятора 

Каждый элемент системы характеризуется показателями надеж-
ности 

𝑃)(𝑡), 𝑄)(𝑡), 𝑓)(𝑡), 𝜆)(𝑡), 𝑡н) , 𝜎)', 𝑡) , 𝑡)в, 𝑗 = 1,… ,𝑚,	
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где m – число элементов. Надежность всей системы описывается ана-
логичными взаимосвязанными показателями. 

Задача анализа безызбыточной системы состоит в определении ее 
показателей 𝑃e(𝑡), 	𝑓e(𝑡), 	𝜆e(𝑡), 𝑡нe по известным характеристикам 
надежности элементов 𝑃!(𝑡), 𝑓!(𝑡), 	𝜆!(𝑡), 𝑖 = 1,… ,𝑚. 

Предполагая, что отказы элементов системы являются независи-
мыми событиями, вероятность безотказной работы системы опреде-
ляют как вероятность произведения независимых событий. Функция 
надежности нерезервированной системы 

𝑃e(𝑡) = 𝑃&(𝑡) ⋅ 𝑃'(𝑡) ⋅ … ⋅ 𝑃6(𝑡) = ∏ 𝑃)(𝑡)6
)+& . (2.1) 

Поскольку функции надежности элементов равны 

𝑃!(𝑡) = exp i−∫ 𝜆!(𝜏)𝑑𝜏
$
# k, (2.2) 

то, подставляя (2.2) в (2.1), получим 

𝑃e(𝑡) =­expE−7 𝜆!(𝜏)𝑑𝜏
$

#
F

6

!+&

= expE−7 𝜆e(𝜏)𝑑𝜏
$

#
F, 

где 𝜆e(𝑡) – интенсивность отказов системы. 
При известной 𝑃e(𝑡) остальные показатели надежности системы 

находятся по следующим формулам: 

𝑄e(𝑡) = 1 − 𝑃e(𝑡) = 1 − expE−7 𝜆e(𝜏)𝑑𝜏
$

#
F, 

𝑓e(𝑡) =
𝑑𝑄e(𝑡)
𝑑𝑡

= −
𝑑𝑃e(𝑡)
𝑑𝑡

= 𝜆e(𝑡) exp E−7 𝜆e(𝜏)𝑑𝜏
$

#
F ,	

𝜆e(𝑡) =
𝑓e(𝑡)
𝑃e(𝑡)

= −
𝑃e%(𝑡)
𝑃e(𝑡)

=O𝜆!(𝑡)
6

!+&

,	
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𝑡нe = 7 𝑃e(𝑡)𝑑𝑡
"

#
= 7 expE−7 𝜆e(𝜏)𝑑𝜏

$

#
F𝑑𝑡

"

#
,	

𝜎e' = 7 (𝑡 − 𝑡нe)'
"

#
⋅ 𝑓e(𝑡)𝑑𝑡,	

𝑡-e = arg>𝑃e(𝑡) ≥ 𝑃-eA , 	 0 < 𝑃-e < 1.	

Если наработка до отказа элементов имеет экспоненциальное рас-
пределение 

𝑃!(𝑡) = 𝑒/Q'$, 	 𝑖 = 1,… ,𝑚, 

то для системы также справедливо экспоненциальное распределение 

𝑃e(𝑡) =­𝑒/Q'$
6

!+&

= 𝑒/∑ Q'$&
'4% = 𝑒/Q5$,	

𝑓e(𝑡) = 𝜆e𝑒/Q5$,	

𝜆e =O𝜆!t
6

!+&

,	

𝑡нe = 7 𝑒/Q5$
"

#
𝑑𝑡 =

1
𝜆e
= b

1
𝑡н&

+
1
𝑡н'

+⋯+
1
𝑡н6

c
/&
,	

где 𝑡н! =
&
Q'

– средняя наработка до отказа i-го элемента.
При равнонадежных элементах с λ₁ = λ₂ = ... = λm = λ получим 

𝑃e(𝑡) = 𝑒/6Q$, 	 𝑄e(𝑡) = 1 − 𝑒/6Q$,	

𝑓e(𝑡) = 𝑚𝜆𝑒/6Q$,	

𝑡нe =
&
6Q

= $н
6
, (2.3)	

где 𝑡н – средняя наработка до отказа элемента. 
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Сохранение системой вида закона распределения наработки до от-
каза элементов справедливо не только для экспоненциального распре-
деления, но и для некоторых неэкспоненциальных распределений нара-
ботки элементов. Например, если для элементов системы справедливо 
распределение Вейбулла, то наработка всей системы также подчинена 
распределению Вейбулла: 

𝑃e(𝑡) =­𝑒/(5'$)&
:

!+&

= 𝑒/∑ (5'$)&0
'4% = 𝑒/(5$)& ,	

𝑡нe =
1
𝑘
Γb1 +

1
𝑚
c = Γb1 +

1
𝑚
c/®O𝑘!6

:

!+&

¯
&/6

,	

где 𝑘 = (∑ 𝑘!6:
!+& )&/6 – параметр распределения наработки до отказа 

системы. 
При одинаковых элементах с параметром распределения k полу-

чим 

𝑡нe = Γb1 +
1
𝑚
c/®O𝑘6

:

!+&

¯
&/6

=
1
𝑘
Γ b1 +

1
𝑚
c/𝑛&/6 = 𝑡н/𝑛&/6. 

Следовательно, надежность нерезервированной системы с увели-
чением количества элементов m уменьшается. Из формулы (2.3) сле-
дует, что средняя наработка до отказа безызбыточной системы, состоя-
щей из равнонадежных элементов с экспоненциальным распределе-
нием наработки до отказа, обратно пропорциональна количеству эле-
ментов. 

Таким образом, надежность нерезервированной системы всегда 
меньше надежности каждого элемента системы, в том числе самого 
ненадежного элемента. 

Анализ полученных формул свидетельствует, что повышение 
надежности нерезервированной системы возможно следующими спо-
собами: 

– уменьшить количество элементов системы; 
– применять равнонадежные элементы; 
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– заменить наименее надежный элемент на более надежный;
– использовать при конструировании системы более надежные

элементы. 
Расчетные формулы для системных показателей надежности зави-

сят от вида моделей безотказности, восстанавливаемости, контроля 
и диагностирования. Марковская модель надежности базируется на 
следующих допущениях: наработка на отказ и время восстановления 
элементов имеют экспоненциальное распределение с параметрами 𝜆! 
и 𝜇! , 𝑖 = 1,… ,𝑚; отказы элементов являются независимыми событи-
ями; в системе реализован идеальный контроль работоспособности, 
позволяющий мгновенно обнаруживать все возникающие отказы эле-
ментов. 

Модель 1. Нагруженный режим, неограниченное восстановление 
При допущениях о нагруженном режиме функционирования эле-

ментов (во время восстановления работоспособности системы при от-
казе элемента он отправляется в ремонт, остальные работоспособные 
элементы не отключаются) и неограниченном восстановлении (имеется 
m ремонтных бригад, т. е. возможность параллельного ремонта всех от-
казавших элементов) получим, что по теореме умножения для незави-
симых событий функция готовности системы определяется выраже-
нием: 

𝐾гe(𝑡) = ∏ 𝐾г!(𝑡).6
!+&  (2.4) 

Подставляя в (2.4) выражение для функции готовности (1.9), по-
лучим 

𝐾гe(𝑡) =­b
𝜇!

𝜆! + 𝜇!
+

𝜆!
𝜆! + 𝜇!

𝑒/(Q'Oh')$c .
6

!+&

 

Следовательно, коэффициент готовности и коэффициент опера-
тивной готовности системы равны 

𝐾гe = ∏ i h'
Q'Oh'

k ,6
!+&  (2.5) 
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𝐾огe(𝑡) =­b
𝜇!

𝜆! + 𝜇!
c 𝑒/Qс$,

6

!+&

	𝜆с =O𝜆! .
6

!+&

 

Выражая среднее время восстановления через коэффициент го-
товности и учитывая (2.5), получим 

𝒕нсв = 𝒕нс 	i
𝟏
𝑲г𝒄

− 𝟏k = i∏ i𝟏 + 𝝀𝒊
𝝁𝒊
k − 𝟏𝒎

𝒊+𝟏 k /∑ 𝝀𝒊.𝒎
𝒊+𝟏  (2.6) 

Из (2.6) следует, что среднее время восстановления системы также 
является комплексным показателем надежности, поскольку зависит от 
показателей безотказности и ремонтопригодности элементов. 

Модель 2. Нагруженный режим, одна ремонтная бригада 
При допущениях, что в ремонтном органе имеется только одна ре-

монтная бригада (в ремонте может находиться только один элемент), 
интенсивности отказов и восстановления всех элементов одинаковы: 
𝜆! = 	𝜆, 𝜇! = 	𝜇, 𝑖 = 1,… ,𝑚, система может находиться в одном из m+1 
состояний: 

– 0 – все элементы работоспособны;
– 1 – один из элементов неработоспособен и находится в ремонте,

остальные элементы работоспособны и находятся в нагруженном ре-
жиме; 

– 2 – два элемента неработоспособны, один из них находится в ре-
монте, другой – в ожидании обслуживания, остальные элементы рабо-
тоспособны и находятся в нагруженном режиме; 

– ...
– m – все m элементов неработоспособны, один из них находится

в ремонте, остальные – в очереди на обслуживание. 
Граф состояний нерезервированной системы при нагруженном ре-

жиме и одной ремонтной бригаде представлен на рис. 2.4. 

Рис. 2.4. Граф состояний нерезервированной системы 
при нагруженном режиме и одной ремонтной бригаде 
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В соответствии с графом состояний система алгебраических урав-
нений Колмогорова имеет вид 

⎩
⎨

⎧
−𝒎𝝀𝒑𝟎 + 𝝁𝒑𝟏 = 𝟎,																																																																																			
(𝒎 − 𝒊 + 𝟏)𝝀𝒑𝒊/𝟏 − >(𝒎− 𝒊)𝝀 + 𝝁A𝒑𝒊 + 𝝁𝒑𝒊O𝟏 = 𝟎, 𝒊 = 𝟏,… ,𝒎,
𝝀𝒑𝒎/𝟏 − 𝝁𝒑𝒎 = 𝟎,																																																																																			
𝒑𝟎 + 𝒑𝟏 +⋯+ 𝒑𝒎 = 𝟏,																																																																												

 (2.7) 

где 𝑝! – стационарная вероятность нахождения системы в i-м состоя-
нии. Решая систему уравнений (2.7), получим коэффициент готовности 
системы: 

𝐾гe = 𝑝# = 1/O𝐴6!
6

!+#

b
𝜆
𝜇
c
!

, (2.8) 

где 𝐴6! = 6!
(6/!)!

 – число размещений из m по i элементов. 
Сравнение формул для коэффициента готовности (2.5) и (2.8) сви-

детельствует о том, что сокращение числа ремонтных бригад с m в пер-
вой модели до одной во второй модели приводит к уменьшению коэф-
фициента готовности. 

 
Модель 3. Ненагруженный режим, одна ремонтная бригада 
При допущениях о ненагруженном режиме функционирования 

элементов (работоспособные элементы после отказа системы отключа-
ются до устранения отказа и поэтому не отказывают) и наличии в ре-
монтном органе только одной ремонтной бригады система может нахо-
диться в одном из m+1 состояний: 

– 0 – все элементы работоспособны; 
– 1 – первый элемент неработоспособен и находится в ремонте, 

остальные элементы отключены; 
– ... 
– m – m-й элемент неработоспособен и находится в ремонте, 

остальные элементы отключены. 
Граф состояний безызбыточной системы при ненагруженном ре-

жиме и одной ремонтной бригаде представлен на рис. 2.5. 
Система алгебраических уравнений Колмогорова согласно графу 

состояний имеет вид 
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⎩
⎪
⎨

⎪
⎧O𝝀𝒊𝒑𝟎 −O𝝁𝒊𝒑𝒊 = 𝟎,

𝒎

𝒊+𝟏

𝒎

𝒊+𝟏

	

𝝀𝒊𝒑𝟎 − 𝝁𝒊𝒑𝒊 = 𝟎, 𝒊 = 𝟏,… ,𝒎,	
𝒑𝟎 + 𝒑𝟏 +⋯+ 𝒑𝒎 = 𝟏.									

(2.9) 

Рис. 2.5. Граф состояний безыизбыточной системы  
при ненагруженном режиме и одной ремонтной бригаде 

Значение коэффициента готовности находим из системы уравне-
ний (2.9): 

𝐾гe = 𝑝# = 1/Ob1 +
𝜆!
𝜇!
c

6

!+&

. (2.10) 

Среднее время восстановления системы равно 

𝒕нсв =O
𝝀𝒊
𝝁𝒊

𝒎

𝒊+𝟏

	/O𝝀𝒊,
𝒎

𝒊+𝟏

=O𝒕н𝒊	в 𝝀𝒊/𝝀𝒄.
𝒎

𝒊+𝟏

 

Согласно данной модели, среднее время восстановления системы, 
как и в модели 1, является комплексным показателем надежности, так 
как зависит от показателей безотказности и ремонтопригодности эле-
ментов. 

Сравнение (2.5) и (2.10) показывает, что ненагруженный режим 
элементов во время ремонта по сравнению с нагруженным режимом 
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увеличивает коэффициент готовности, несмотря на меньшее количе-
ство ремонтных бригад. 

Модель 4. Ненагруженный режим, одна ремонтная бригада, не-
идеальный контроль 

Согласно данной модели, в элементе могут быть скрытые отказы. 
Пусть 𝛽! – доля скрытых отказов в i-м элементе, 𝛼! – доля обнаружива-
емых системой контроля отказов в i-м элементе; время задержки обна-
ружения скрытых отказов имеет экспоненциальное распределение с па-
раметром 𝜈!. Система может находиться в одном из 2m+1 состояний: 

– 0 – все элементы работоспособны;
– 1, 2, …, m – в соответствующем элементе произошел скрытый

отказ; 
– m+1, m+2, …, 2m – отказ элемента обнаружен, и он находится

в ремонте. 
Граф состояний системы для модели 4 представлен на рис. 2.6. 

Рис. 2.6. Граф состояний нерезервированной системы  
при ненагруженном режиме, неидеальном контроле и одной 

ремонтной бригаде 

Система алгебраических уравнений Колмогорова относительно 
стационарных вероятностей состояний системы в соответствии с гра-
фом имеет вид 



64 

⎩
⎪
⎨

⎪
⎧−O𝝀𝒊𝒑𝟎 −O𝝁𝒊𝒑𝒎O𝒊 = 𝟎,

𝒎

𝒊+𝟏

𝒎

𝒊+𝟏

																																

𝜷𝒊𝝀𝒊𝒑𝟎 − 𝝂𝒊𝒑𝒊 = 𝟎, 𝒊 = 𝟏,… ,𝒎,																							
𝝂𝒊𝒑𝒊 + 𝜶𝒊𝝀𝒊𝒑𝟎 − 𝝁𝒊𝒑𝒎O𝒊 = 𝟎, 𝒊 = 𝟏,… ,𝒎,				
𝒑𝟎 + 𝒑𝟏 +⋯+ 𝒑𝒎 = 𝟏.																																				

Из полученной системы уравнений находим коэффициент готов-
ности системы: 

𝑲г𝒄 = 𝒑𝟎 = 𝟏/®𝟏 +O
𝝀𝒊
𝝁𝒊
b𝟏 + 𝜷𝒊

𝝁𝒊
𝝂𝒊
c

𝒎

𝒊+𝟏

¯. 

Коэффициент контролируемой готовности системы: 

𝐾кгe =O𝑝!

6

!+&

=
1 + ∑ 𝛽!

𝜆!
𝜈!

6
!+&

1 + ∑ 𝜆!
𝜇!
i1 + 𝛽!

𝜇!
𝜈!
k6

!+&

. 

Коэффициент оперативной готовности системы равен 

𝐾огe(𝑡) = 𝑒/Qс$/ ®1 +O
𝜆!
𝜇!
b1 + 𝛽!

𝜇!
𝜈!
c	

6

!+&

¯ , 𝜆с =O𝜆! .
6

!+&

 

Среднее время восстановления системы равно 

𝒕нсв = 𝒕нс 	b
𝟏
𝑲г𝒄

− 𝟏c =Ob
𝝀𝒊
𝝁𝒊𝝀с

+ 𝜷𝒊
𝝀𝒊
𝝂𝒊𝝀с

c .
𝒎

𝒊+𝟏

 

Полученный результат свидетельствует о том, что в четвертой мо-
дели среднее время восстановления системы также является комплекс-
ным показателем надежности. 
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Модель 5. Полумарковская модель, ненагруженный режим, иде-
альный контроль, одна ремонтная бригада 

В отличие от марковской модели 3, в данной модели предполага-
ется, что время восстановления элемента имеет произвольное распре-
деление 𝐹в!(𝑡). Граф состояний аналогичен и содержит m+1 состояний 
(рис. 2.5). Стационарные вероятности состояний полумарковского про-
цесса определяются по формуле 

𝒑𝒊 = 𝝅𝒊𝝉𝒊/O𝝅𝒋𝝉𝒋

𝒎

𝒋+𝟎

, 𝝅𝒊 =O𝝅𝒋𝒑𝒋𝒊,
𝒎

𝒋+𝟎

 

где 𝜋! – стационарные вероятности состояний вложенной марковской 
цепи; 𝜏! – среднее время пребывания процесса в i-м состоянии; 𝑝)! – 
вероятности перехода из j-го в i-е состояние. В соответствии с графом 
состояний стационарные вероятности для вложенного марковского 
процесса вычисляются из системы линейных уравнений: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜋! = 𝜋#𝑝#! , 𝑖 = 1,… ,𝑚,								

𝜋# =O𝜋! ,
6

!+&

																														

O𝜋!

6

!+#

= 1.																																			

(2.11) 

Решение системы уравнений (2.11) с учетом 

𝝉𝟎 =
𝟏
𝝀с
, 𝒑𝟎𝒊 =

𝝀𝒊
𝝀с
, 𝒊 = 𝟏,… ,𝒎, 𝝉𝒊 = 𝒕н𝒊в = 7(𝟏 − 𝑭в𝒊(𝒕))𝒅𝒕,

"

𝟎

𝒊

= 𝟏,… ,𝒎		

имеет вид 

π# =
1
2
,	 π! =

λ!
2λe

, 	 𝑖 = 1,… ,𝑚. 
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Следовательно, коэффициент готовности и коэффициент опера-
тивной готовности равны 

𝐾гe = 𝑝# = 1/®1 +O𝜆!𝑡н!в
6

!+&

¯ ,	

𝐾огe(𝑡) = 𝑒/05$/ ®1 +O𝜆!𝑡н!в
6

!+&

¯ .	

Среднее время восстановления системы находится по формуле 

𝒕нсв =O
𝝀𝒊𝒕н𝒊в

𝝀с
.

𝒎

𝒊+𝟏

 

Модель 6. Полумарковская модель, ненагруженный режим, неиде-
альный контроль, одна ремонтная бригада 

Пусть 𝛽! – доля скрытых отказов в i-м элементе; время задержки 
обнаружения скрытых отказов имеет произвольное распределение 
𝐹з!(𝑡), время восстановления элемента имеет распределение 𝐹в!(𝑡). 
Граф состояний модели имеет 2m+1 состояний (рис. 2.6). Стационар-
ные вероятности для вложенного марковского процесса в соответствии 
с графом состояний находятся из системы алгебраических уравнений: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜋# =O𝜋6O! ,

6

!+&

	

𝜋! = 𝜋#𝑝#! , 𝑖 = 1,… ,𝑚,									
𝜋6O! = 𝜋! + 𝜋#𝑝#,6O! , 𝑖 = 1,… ,𝑚,

O𝜋!

6

!+#

= 1.	

 (2.12) 

Из системы уравнений (2.12) получим коэффициенты готовности 
и оперативной готовности: 
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𝐾гe = 𝑝# = 1/®1 +O(𝛽!𝜆!𝑡н!з + 𝜆!)𝑡н!в
6

!+&

¯, 

𝐾огe(𝑡) =
𝑒/Qс$

1 + ∑ >𝛽!𝜆!𝑡н!з + 𝜆!A𝑡н!в6
!+&

, 

где 

𝑡н!в = 7 [1 − 𝐹в𝑖(𝑡)]𝑑𝑡
"

#
, 	 𝑡н!з = 7 [1 − 𝐹з𝑖(𝑡)]𝑑𝑡

"

#
, 	 𝑖 = 1,… ,𝑚. 

Среднее время восстановления системы определяется по формуле 

𝒕нсв =O(𝜷𝒊𝝀𝒊𝒕н𝒊з + 𝝀𝒊)𝒕н𝒊в /𝝀с.
𝒎

𝒊+𝟏

 

Надежностная чувствительность системы характеризует влия-
ние малых вариаций параметров элементов на показатели надежности 
системы 𝑃e(𝑡), 𝑡нe. Количественной мерой чувствительности системы 
по параметру элемента являются функции и коэффициенты чувстви-
тельности: 

∂𝑃e
∂𝑐!

, 	
∂𝑡нe

∂𝑐!
, 	 𝑖 = 1,2, …, 

где 𝑐! – показатель (параметр) надежности i-го элемента. Как правило, 
𝑐! – это интенсивность отказов 𝜆!(𝑡) или 𝜆! для экспоненциального рас-
пределения наработки на отказ, реже – функция надежности элемента 
𝑃!(𝑡). 

Надежностные чувствительности применяются при синтезе тех-
нических систем с заданным или экстремальным показателем надеж-
ности. Они также позволяют определить наиболее (наименее) чувстви-
тельные характеристики надежности системы и момент времени, для 
которого общесистемные показатели имеют экстремальное значение. 
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Функция чувствительности показателя надежности системы 𝑃e(𝑡) 
по интенсивностям отказов элементов 𝜆! , 𝑖 = 1,… ,𝑚 (в случае экспо-
ненциального распределения): 

𝑉!N(𝑡) =
∂𝑃e
∂λ!

, 	 𝑖 = 1,… ,𝑚. 

Коэффициент чувствительности системного показателя 𝑡нe по 
интенсивностям отказов элементов 𝜆! , 𝑖 = 1,… ,𝑚: 

𝑉!$ =
∂𝑡нe

∂λ!
, 	 𝑖 = 1,… ,𝑚. 

Функции (коэффициенты) чувствительности 𝑉!N, 𝑉!$ являются раз-
мерными величинами, что затрудняет сравнение чувствительностей 
разнородных систем. На практике в основном используют безразмер-
ные чувствительности. Безразмерные или логарифмические функции 
(коэффициенты) чувствительности имеют вид 

ψ!N(𝑡) =
∂𝑃e/𝑃e
∂λ!/λ!

=
∂(ln𝑃e)
∂(ln λ!)

, 	 𝑖 = 1,… ,𝑚,	

ψ!$ =
∂𝑡нe/𝑡нe

∂λ!/λ!
=
∂(ln 𝑡нe)
∂(ln λ!)

, 	 𝑖 = 1,… ,𝑚.	

Взаимосвязь размерных и безразмерных чувствительностей сле-
дующая: 

ψ!N(𝑡) = 𝑉!N(𝑡) ⋅
λ!
𝑃e(𝑡)

, 	 𝑖 = 1,… ,𝑚,	

ψ!$ = 𝑉!$ ⋅
λ!
𝑡нe
, 𝑖 = 1,… ,𝑚.	

Для многих систем с неравнонадежными элементами производ-
ные представляют собой сложные дробно-рациональные функции, 
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которые сложно использовать для анализа и синтеза. В этом случае чув-
ствительности проще найти по следующим приближенным формулам: 

𝑉!N ≈
𝑃e(𝑡, λ&, λ', … , λ6) − 𝑃e(𝑡, λ&, … , λ!/&, λ! + Δλ,… , λ6)

Δλ!
,	

𝑉!$ ≈
𝑡нe(λ&, λ', … , λ6) − 𝑡нe(λ&, … , λ!/&, λ! + Δλ,… , λ6)

Δλ!
, 	 𝑖 = 1,… ,𝑚,	

где 𝛥𝜆! – малые приращения 𝜆!. 
Рассмотрим безызбыточную систему, состоящую из m элементов 

(структурная надежностная схема представлена на рис. 2.1), характери-
стики надежности которых 𝜆! , 𝑃!(𝑡), 𝑖 = 1,… ,𝑚. Ее системные показа-
тели надежности имеют вид 

𝑃e(𝑡) =­𝑃!(𝑡)
6

!+&

= 𝑒/∑ 0'$&
'4% , 	 𝑡нe =

1
∑ λ!6
!+&

. 

Функция чувствительности 𝑃e(𝑡) по параметру 𝜆! при произволь-
ном t: 

𝑉!N(𝑡) =
∂𝑃e(𝑡)
∂λ!

= −𝑡 ⋅ 𝑒/∑ 0'$&
'4% = −𝑡 ⋅ 𝑃e(𝑡), 	 𝑖 = 1,… ,𝑚. 

Коэффициент чувствительности системного показателя 𝑡нe по па-
раметру 𝜆!: 

𝑉!$ =
∂𝑡нe

∂λ!
= −

1

>∑ λ!6
!+& A

' − (𝑡н
e)', 	 𝑖 = 1,… ,𝑚.

Следовательно, для безызбыточной системы размерные чувстви-
тельности не зависят от номера элемента, а зависят только от значений 
интенсивностей отказов элементов 𝜆! , 𝑖 = 1,… ,𝑚. 

Безразмерная функция чувствительности 𝑃e(𝑡) по параметру 𝜆! 
имеет вид 
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ψ!N(𝑡) = 𝑉!N(𝑡) ⋅
λ!
𝑃e(𝑡)

= −𝑡 ⋅ 𝑃e(𝑡) ⋅
λ!
𝑃e(𝑡)

= −𝑡 ⋅ λ! , 	 𝑖 = 1,… ,𝑚. 

Безразмерный коэффициент чувствительности системного пока-
зателя 𝑡нe по параметру 𝜆! находится по формуле 

ψ!$ = 𝑉!$ ⋅
λ!
𝑡нe
= −(𝑡нe)' ⋅

λ!
𝑡нe
= −λ! ⋅ 𝑡нe , 	 𝑖 = 1,… ,𝑚. 

Из полученных формул видно, что для нерезервированной си-
стемы безразмерные чувствительности, в отличие от размерных чув-
ствительностей, зависят от номера элемента. 

При исследовании надежности нерезервированных систем возни-
кают две типовые задачи: 

1. По заданным явно или косвенно показателям надежности всех
элементов нерезервированной системы необходимо определить показа-
тели надежности системы. 

2. По заданным явно или косвенно желаемым показателям надеж-
ности конструируемой технической системы и некоторым дополни-
тельным условиям или требованиям, например стоимость, сложность 
и т. д., необходимо определить показатели надежности используемых 
элементов и (или) их количество. 

Рекомендуемый порядок решения задачи первого типа: 
1. Проанализировать описание задачи, в результате чего выявить

условия для определения показателей надежности всех m элементов. 
2. Преобразовать разнородные показатели надежности к одному

виду, например 𝑃)(𝑡) или 𝜆)(𝑡), 𝑗 = 1,… ,𝑚. 
3. Записать формулу для 𝑃e(𝑡).
4. Вычислить 𝑃e(𝑡) или другие показатели надежности.
Пример 1 задачи первого типа. Осветительная система состоит из

двух последовательно включенных электроламп с показателями 
λ₁ = 0,0025 ч⁻¹, 𝑡-' = 30 ч при 𝑃-' = 0,8. Определить среднюю наработку 
до отказа системы и вероятность ее отказа в момент времени 100 ч. 

Решение. Структурная и надежностная схемы осветительной си-
стемы представлены на рис. 2.7 и 2.8. 

Из условия задачи следует, что первый элемент имеет экспонен-
циальное распределение, а для второго элемента вид функции 𝑃'(𝑡) не 
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указан. Допуская однородность электроламп, т. е. 𝑃'(𝑡) = 𝑒/Q$$, полу-
чим 

𝑃'>𝑡𝜸'A = 𝑃'(30) = 𝑒/Q$P# = 𝑃-' = 0,8. 

Рис. 2.7. Структурная схема системы 

Рис. 2.8. Надежностная схема системы 

Следовательно, интенсивность отказов второй электролампы: 

𝜆' = −
ln 0, 8
30

≈ 0,007438 ч/&. 

Функция надежности системы: 

𝑃e(𝑡) = 𝑃&(𝑡) ∙ 𝑃'(𝑡) = 𝑒/tQ%OQ$u$ = 𝑒/Q5$, 

где интенсивность отказов осветительной системы 

𝜆e = 𝜆& + 𝜆' = 0,0025 + 0,007438 = 0,009938 ч/&. 

Средняя наработка до отказа системы: 

𝑡нe =
1
𝜆e
=

1
0,009938

≈ 100,62 ч. 

Вероятность отказа системы в момент времени 100 ч: 
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𝑄e(100) = 1 − 𝑃e(100) = 1 − 𝑒/Q5⋅&## = 1 − 𝑒/#,##vvP[⋅&## ≈ 0,63. 

Пример 2 задачи первого типа. В техническом элементе воз-
можны внезапные отказы, вызванные скрытыми дефектами его изго-
товления, а также постепенные отказы, обусловленные протекающими 
в нем процессами старения и износа. Внезапные отказы распределены 
по экспоненциальному закону с параметром λ₁ = 0,0001 ч⁻¹, а постепен-
ные отказы подчиняются нормальному закону с параметрами 
𝑡н' = 1000 ч, σ₂ = 100 ч. Определить вероятность безотказной работы 
элемента и интенсивность его отказов на интервале времени от 200 до 
1200 ч. Проанализировать полученные результаты. 

Решение. Для расчета показателей надежности изделия, в котором 
наблюдаются два процесса, один из которых приводит к внезапным отка-
зам, а другой – к постепенным, можно использовать формулы для харак-
теристик надежности нерезервированной системы с двумя элементами. 

Следовательно, 

𝑃(𝑡) = 𝑃&(𝑡) ∙ 𝑃'(𝑡), 	 𝜆(𝑡) = 𝜆&(𝑡) + 𝜆'(𝑡). 

Для экспоненциального закона справедливо 

𝑃&(𝑡) = 𝑒/Q%$ = 𝑒/#,###&$, 	 𝜆&(𝑡) = 𝜆& = 0,0001 = 𝑐𝑜𝑛𝑠𝑡. 

Для нормального закона получим 

𝑃'(𝑡) = 𝐹# b
𝑡н' − 𝑡
σ'

c = 𝐹# b
1000 − 𝑡
100

c ,	

𝑓'(𝑡) =
1
σ'
φ# b

𝑡 − 𝑡н'
σ'

c = 0,01 ⋅ φ# b
𝑡 − 1000
100

c ,	

где 

φ#(𝑡) =
1
√2π

𝑒/$$/', 	 𝐹#(𝑡) =
1
√2π

7 𝑒/w$/'𝑑τ
$

/"
= 7 φ#(τ)𝑑τ

$

/"
,	



 73 

𝜆'(𝑡) =
𝑓'(𝑡)
𝑃(𝑡)

=
1
σ'
⋅ 𝜑# b

𝑡 − 𝑡н'
𝜎'

c =
0,01 ⋅ φ# i

𝑡 − 1000
100 k

𝐹# i
1000 − 𝑡
100 k

.	

При совместном рассмотрении внезапных и постепенных отказов 
получим показатели надежности элемента: 

𝑃(𝑡) = 𝑒/#,###&$ ⋅ 𝐹# b
1000 − 𝑡
100

c ,	

𝜆(𝑡) = 0,0001 +
0,01 ⋅ φ# i

𝑡 − 1000
100 k

𝐹# i
1000 − 𝑡
100 k

.	

Табулированные значения функций φ₀(t) и F₀(t) приведены 
в прил. 4 и 5. Результаты расчета показателей надежности элемента с 
отказами двух типов представлены в табл. 2.1. 
 

Таблица 2.1 
Результаты расчета показателей надежности элемента  

t, ч 𝜆(𝑡), ч/& 𝑃(𝑡) 
200 0,0001 0,98 
400 0,000 0,96 
600 0,0001 0,94 
800 0,0006 0,89 
1000 0,0081 0,452 
1200 0,0231 0,02 

 
Как видно из табл. 2.1, при t ≤ 600 ч λ(t) ≈ λ₁, т. е. внезапные отказы 

имеют определяющее значение. Затем сказывается влияние и постепен-
ных отказов, интенсивность отказов возрастает. Вероятность безотказной 
работы элемента при t ≤ 600 ч медленно убывает, а потом все быстрее. 

Рекомендуемый порядок решения задачи второго типа: 
1. Проанализировать описание задачи, в результате чего выявить, 

достаточно ли дополнительных условий для определения всех неиз-
вестных величин; принять допущения о виде распределений, 



74 

равнонадежности элементов, пропорциональной зависимости стоимо-
сти элемента от 𝑡н и т. д. 

2. Выбрать метод решения задачи:
– определение количества равнонадежных элементов m и показа-

телей надежности элементов непосредственно по приведенным ранее 
формулам; 

– определение количества неравнонадежных элементов m и пока-
зателей надежности элементов путем последовательного подбора неиз-
вестных и сравнения полученных значений показателей надежности 
системы с желаемыми. 

3. Выполнить необходимые расчеты в соответствии с выбранным
методом. 

Пример задачи второго типа. Конструируемая осветительная си-
стема состоит из ряда последовательно включенных электроламп с ин-
тенсивностью отказов λ = 0,0015 ч⁻¹. Система должна обладать гамма-
ресурсом 𝑡-с не более 50 ч при 𝑃-с = 0,7 и быть минимально сложной. 

Решение. Структурная и надежностная схемы конструируемой 
осветительной системы представлены на рис. 2.9 и 2.10. 

Рис. 2.9. Структурная схема системы 

Рис. 2.10. Надежностная схема системы 

Из постановки задачи следует, что используемые лампы равнона-
дежны и их показатели описываются экспоненциальным распределе-
нием. Следовательно, для самой системы также справедливо экспонен-
циальное распределение с пока неизвестной интенсивностью отказов 
𝜆e = 𝑚𝜆 = 0,0015m, где m – минимально возможное число электроламп. 

Так как элементы системы равнонадежные, то неизвестное коли-
чество электроламп m определяется из формулы 
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𝑃e(𝑡) =­𝑃)(𝑡)
6

)+&

= 𝑒/6Q$ = 𝑒/Q5$. 

Желаемую интенсивность отказов системы 𝜆eж определяем из 
уравнения 

𝑃e>𝑡-eA = 𝑃e(50) = 𝑒/Q5ж⋅^# = 𝑃-e = 0,7. 

Следовательно, 𝜆eж ≈ 0,0071335 ч⁻¹. Количество последовательно 
включенных электроламп в осветительной системе: 

𝑚 = l
𝜆сж

0,0015m
= 5, 

где [ ] – округление до ближайшего большего целого числа. 

2.2. Задачи  по  теме  «Определение  показателей  
надежности  нерезервированных  систем» 

Задача 1. Три последовательно включенных каскада усиления, из 
которых состоит усилитель напряжения, имеют следующие показатели 
надежности: интенсивности отказов λ₁ = 0,001 ч⁻¹, λ₂ = 0,003 ч⁻¹ 
и 𝑃(𝑡.P) = 0,3, где 𝑡.P = 100 ч. Определить среднюю наработку до от-
каза и гамма-ресурс усилителя при 𝑃-e = 0,8. 

Задача 2. Передаточная функция регулятора имеет следующий 
вид: 

𝑊(𝑝) = 𝐶& +
𝐶#
𝑝
+ 𝐶'𝑝, 

где C₂, C₁, C₀ – параметры настройки регулятора. Регулятор состоит из 
усилителя с интенсивностью отказов 𝜆у = 0,0022 ч⁻¹, интегратора 
с 𝑡-и = 160 ч при 𝑃-и = 0,8, дифференциатора с 𝑡нд = 1050 ч и сумматора 
с 𝑃Ʃ(70) = 0,9. Структурная схема регулятора представлена на рис. 2.11. 
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Рис. 2.11. Структурная схема регулятора 

Необходимо построить структурную надежностную схему регуля-
тора, определить закон регулирования и плотность вероятности отказа 
регулятора при t = 250 ч. 

Задача 3. Осветительная система состоит из четырех последова-
тельно включенных электроламп Л1–Л4 с номинальными интенсивно-
стями отказов λ₁ = 0,035 ч⁻¹, λ₂ = 0,007 ч⁻¹, λ₃ = 0,021 ч⁻¹, λ₄ = 0,015 ч⁻¹. 
Любую лампу можно заменить на другую, интенсивность отказов кото-
рой отличается от номинальной на величину Δλ = 0,00014. Определить 
номинальную среднюю наработку до отказа системы, коэффициент 
чувствительности 𝑡нe к вариациям λ₃, а также лампу, которая сильнее 
всего влияет на 𝑡нe. 

Задача 4. Система автоматического регулирования состоит из ше-
сти элементов: регулятора, датчика, задатчика, элемента сравнения, ис-
полнительного механизма, регулирующего органа (рис. 2.12), интен-
сивности отказов которых соответственно равны: 𝜆Д = 0,003 ч⁻¹, 
𝜆З = 0,0015 ч⁻¹, 𝜆ЭС = 0,00075 ч⁻¹, 𝜆Р = 0,006 ч⁻¹, 𝜆ИМ = 0,009 ч⁻¹, 
𝜆РО = 0,015 ч⁻¹. 

Определить среднюю наработку до отказа системы, вероятность 
отказа системы в момент времени 𝑡. = 50 ч, а также размерные и без-
размерные функции и коэффициенты чувствительности 𝑃e(𝑡) и 𝑡нe к ва-
риациям 𝜆Р. 

Задача 5. В автоматической системе регулирования, приведенной 
в задаче 4, разрешено интенсивность отказа любого одного элемента 
изменить в два раза с целью увеличения средней наработки до отказа 
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системы. Какой элемент необходимо выбрать и какова средняя нара-
ботка до отказа модернизированной АСР? 

Рис. 2.12. Структурная схема АСР: Д – датчик; З – задатчик;  
ЭС – элемент сравнения; Р – регулятор; ИМ – исполнительный 

механизм; РО – регулирующий орган  

Задача 6. Конструируемая автоматизированная система обра-
ботки информации состоит из нескольких последовательно включен-
ных блоков с интенсивностью отказов λ = 0,001 ч⁻¹. Система должна 
обладать гамма-ресурсом не более 100 ч при 𝑃-с = 0,8 и быть мини-
мально сложной. Определить структуру системы. 

Задача 7. В системе 12500 элементов, средняя интенсивность от-
казов которых равна 𝜆ср = 0,003 ч⁻¹. Требуется определить функцию 
надежности и вероятность отказа системы, плотность вероятности от-
каза для t = 250 ч и среднее время безотказной работы системы. 

Задача 8. Канал связи состоит из приемника и передатчика. Веро-
ятности безотказной работы каждого из них в течение времени t = 100 ч 
соответственно равны P₁(100) = 0,95, P₂(100) = 0,97. Для приемника 
и передатчика справедлив экспоненциальный закон надежности. Необ-
ходимо определить среднее время безотказной работы канала связи. 

Задача 9. Функция надежности одного элемента нерезервирован-
ной системы в течение времени t равна P(t) = 0,9997. Требуется опреде-
лить вероятность безотказной работы системы, состоящей из ста таких 
элементов. 

Задача 10. Вероятность безотказной работы системы в течение 
времени t равна 𝑃e(𝑡) = 0,95. В системе 120 равнонадежных элементов. 
Необходимо найти вероятность безотказной работы одного элемента. 
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Задача 11. Прибор состоит из пяти узлов, вероятности безотказ-
ной работы которых в течение времени t следующие: P₁(t) = 0,98, 
P₂(t) = 0,9, P₃(t) = 0,998, P₄(t) = 0,975, P₅(t) = 0,985. Необходимо опреде-
лить вероятность безотказной работы прибора, а также вероятность его 
отказа при t = 1200 ч. 

Примечание. Поскольку вероятности безотказной работы узлов 
близки к единице, то в данном случае удобнее использовать прибли-
женную формулу 

𝑃e(𝑡) =­𝑃)(𝑡)
^

)+&

≈ 1 −O𝑄)(𝑡)
^

)+&

, 

где 𝑄)(𝑡) – вероятность отказа j-го узла. 
Задача 12. Приемник состоит из трех блоков: УВЧ, УПЧ, УНЧ. 

Вероятности безотказной работы в течение времени t каждого из них 
равны P₁(t) = 0,9, P₂(t) = 0,7, P₃(t) = 0,8. Необходимо определить веро-
ятность отказа приемника вследствие того, что: 1) отказал блок УВЧ; 
2) отказал блок УПЧ; 3) отказали блоки УВЧ и УНЧ; 4) отказали все
три блока.

Задача 13. Приемное устройство состоит из кодера и модулятора, 
средняя наработка на отказ которых равна 𝑡н& = 25000 ч и 𝑡н' = 30000 ч. 
Необходимо определить вероятность того, что за время t = 15000 ч оба 
элемента окажутся неработоспособны, и наоборот, кодер и модулятор 
работоспособны. 

Задача 14. Электрическая цепь состоит из трех последовательно 
включенных элементов. Увеличение напряжения в два раза может при-
вести к обрыву электрической цепи вследствие отказа одного из трех 
элементов с вероятностями Q₁ = 0,4, Q₂ = 0,5, Q₃ = 0,6. Требуется опре-
делить вероятность отсутствия отказа типа «обрыв» электрической 
цепи при увеличении напряжения. Как изменится искомая вероятность, 
если в цепи будут отсутствовать первый или второй, или третий эле-
менты? 

Задача 15. Система состоит из 1000 элементов, отказ каждого из 
которых приводит к отказу системы. Средняя интенсивность отказов 
элементов равна 0,00002 ч⁻¹. Необходимо определить среднюю нара-
ботку до отказа и вероятность отказа системы в течение 200 ч. 

Задача 16. Предполагается, что количество элементов проектиру-
емой системы должно быть не более 2000. Необходимо определить, 



может ли быть спроектирована система, для которой средняя наработка 
на отказ составляет 200 ч. 

Задача 17. Проектируемая безызбыточная техническая система 
состоит из нескольких блоков, интенсивность отказов которых 
λ = 0,00002 ч⁻¹. Вероятность безотказной работы системы в течение 
500 ч равна 𝑃e(500) = 0,9. Определить максимально возможное количе-
ство блоков в проектируемой системе. 

Задача 18. Вероятность отказа нерезервированного устройства, 
состоящего из четырех равнонадежных элементов, за t = 1000 ч 
𝑄e(1000) = 0,4. Во сколько раз необходимо изменить интенсивность 
отказов элемента, чтобы снизить вероятность отказа устройства в два 
раза. 



ЗАКЛЮЧЕНИЕ

В пособии, предназначенном для студентов, обучающихся по 
направлениям подготовки «Автоматизация технологических процессов 
и производств», «Информатика и вычислительная техника», «Управле-
ние в технических системах», рассмотрены теоретические основы тео-
рии надежности и их практическое применение. Приведены основные 
понятия теории надежности, показатели надежности технических эле-
ментов, законы распределения, используемые в моделях безотказности 
и восстанавливаемости, основные расчетные формулы для системных 
показателей надежности, методика решения типовых задач по надеж-
ности нерезервированных систем. 
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ПРИЛОЖЕНИЯ

Приложение 1 

Значения гамма-функции 
x Г(x) x Г(x) x Г(x) x Г(x) 

1,00 1,00000 1,25 0,90640 1,50 0,88623 1,75 0,91906 
1,01 0,99433 1,26 0,90440 1,51 0,88659 1,76 0,92137 
1,02 0,98884 1,27 0,90250 1,52 0,88704 1,77 0,92376 
1,03 0,98355 1,28 0,90072 1,53 0,88757 1,78 0,92623 
1,04 0,97844 1,29 0,89904 1,54 0,88818 1,79 0,92877 
1,05 0,97350 1,30 0,89747 1,55 0,88887 1,80 0,93188 
1,06 0,96874 1,31 0,8960 1,56 0,88964 1,81 0,93408 
1,07 0,96415 1,32 0,89464 1,57 0,89049 1,82 0,93685 
1,08 0,95973 1,33 0,89338 1,58 0,89142 1,83 0,93369 
1,09 0,95546 1,34 0,89222 1,59 0,89243 1,84 0,94261 
1,10 0,95135 1,35 0,89115 1,60 0,89352 1,85 0,94561 
1,11 0,94740 1,36 0,89018 1,61 0,89468 1,86 0,94869 
1,12 0,94359 1,37 0,88931 1,62 0,89592 1,87 0,95184 
1,13 0,93993 1,38 0,88854 1,63 0,89724 1,88 0,95507 
1,14 0,93642 1,39 0,88785 1,64 0,89864 1,89 0,95838 
1,15 0,93304 1,40 0,88726 1,65 0,90012 1,90 0,96177 
1,16 0,92980 1,41 0,88676 1,66 0,90167 1,91 0,96523 
1,17 0,92670 1,42 0,88636 1,67 0,90330 1,92 0,96877 
1,18 0,92373 1,43 0,88604 1,68 0,90500 1,93 0,96240 
1,19 0,92089 1,44 0,88581 1,69 0,90678 1,94 0,97610 
1,20 0,91817 1,45 0,88566 1,70 0,90864 1,95 0,97988 
1,21 0,91558 1,46 0,88560 1,71 0,91057 1,96 0,98374 
1,22 0,91311 1,47 0,88563 1,72 0,91258 1,97 0,98768 
1,23 0,91075 1,48 0,88575 1,73 0,91467 1,98 0,99171 
1,24 0,90852 1,49 0,88595 1,74 0,91683 1,99 0,99581 

2,00 1,00000 
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Приложение 2 

Значения распределения 𝝌𝟐 в зависимости от f и Р 
f P 

0,99 0,98 0,95 0,90 0,80 0,70 0,50 0,30 0,20 0,10 0,05 0,02 0,01 0,001 
1 0,000 0,001 0,004 0,016 0,064 0,148 0,455 1,074 1,642 2,71 3,84 5,41 6,64 10,83 
2 0,020 0,040 0,102 0,211 0,446 0,713 1,386 2,41 3,22 4,60 5,99 7,82 9,21 13,83 
3 0,115 0,185 0,352 0,584 1,005 1,424 2,37 3,66 4,64 6,25 7,82 9,84 11,34 16,27 
4 0,297 0,429 0,711 1,064 1,649 2,20 3,36 4,88 5,99 7,78 9,49 11,67 13,28 18,46 
5 0,554 0,752 1,145 1,61 2,34 3,00 4,35 6,06 7,29 9,24 11,07 13,39 15,09 20,50 
6 0,872 1,134 1,635 2,20 3,07 3,83 5,35 7,23 8,56 10,64 12,59 15,03 16,81 22,50 
7 1,239 1,564 2,17 2,83 3,82 4,67 6,35 8,38 9,80 12,02 14,07 16,62 18,48 24,30 
8 1,646 2,03 2,73 3,49 4,59 5,53 7,34 9,52 11,03 13,36 15,51 18,17 20,10 26,10 
9 2,09 2,53 3,32 4,17 5,38 6,39 8,34 10,66 12,24 14,68 16,92 19,68 21,70 27,90 
10 2,56 3,00 3,94 4,86 6,18 7,27 9,34 11,78 13,44 15,99 18,31 21,20 23,20 29,60 
11 3,06 3,61 4,58 5,58 6,99 8,15 10,34 12,90 14,63 17,28 19,68 22,60 24,70 31,30 
12 3,57 4,18 5,23 6,13 7,81 9,02 11,34 14,01 15,81 18,55 21,00 24,10 26,20 32,90 
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Приложение 3 

Значения критерия Колмогорова 
λ Р(λ) 

0,0 1,000 
0,1 1,000 
0,2 1,000 
0,3 1,000 
0,4 0,997 
0,5 0,964 
0,6 0,864 
0,7 0,711 
0,8 0,544 
0,9 0,393 
1,0 0,270 
1,1 0,178 
1,2 0,112 
1,3 0,068 
1,4 0,040 
1,5 0,022 
1,6 0,012 
1,7 0,006 
1,8 0,003 
1,9 0,002 
2,0 0,001 
2,1 0,000 



86 

Приложение 4 

Значения функции 𝑭𝟎(𝒕) =
𝟏

√𝟐𝝅∫ 𝒆/
!𝝉𝟐
𝟐 𝒅𝝉𝒕

/"  
t до знача-

щих цифр 
значащие цифры t 

0 1 2 3 4 5 6 7 8 9 
0,0 0, 5000 5040 5080 5120 5160 5199 5239 5279 5319 5359 
0,1 0, 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753 
0,2 0, 5793 5832 5871 5910 5948 5987 6026 6064 6103 6141 
0,3 0, 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517 
0,4 0, 6554 6591 6628 6664 6700 6736 6772 6808 6844 6879 
0,5 0, 6915 6950 6985 7019 7054 7088 7123 7157 7190 7224 
0,6 0, 7251 7291 7324 7357 7389 7422 7454 7486 7517 7549 
0,7 0, 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852 
0,8 0, 7881 7910 7939 7967 7995 8023 8051 8078 8106 8133 
0,9 0, 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389 
1,0 0, 8413 8438 8461 8485 8508 8531 8554 8577 8599 8621 
1,1 0, 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830 
1,2 0, 8849 8869 8888 8907 8925 8944 8963 8980 8997 9015 
1,3 0,9 0320 0490 0658 0824 0988 1149 1308 1466 1621 1774 
1,4 0,9 1924 2073 2220 2364 2507 2647 2785 2922 3056 3189 
1,5 0,9 3319 3448 3574 3699 3822 3943 4062 4179 4295 4408 
1,6 0,9 4520 4630 4738 4845 4950 5053 5154 5254 5352 5449 
1,7 0,9 5543 5637 5728 5818 5907 5994 6080 6164 6246 6327 
1,8 0,9 6407 6485 6562 6637 6712 6784 6856 6926 6995 7062 
1,9 0,9 7128 7193 7257 7320 7381 7441 7500 7558 7615 7670 
2,0 0,9 7725 7778 7831 7882 7932 7982 8080 8077 8124 8169 
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2,1 0,9 8214 8257 8300 8341 8382 8422 8461 7500 8537 8574 
2,2 0,9 8610 8645 8679 8713 8745 8778 8809 8840 8870 8899 
2,3 0,9 8928 8956 8983 9010 9036 9061 9086 9111 9134 9158 
2,4 0,99 1802 2024 2240 2451 2656 2854 3053 3244 3431 3611 
2,5 0,99 3790 3963 4132 4297 4457 4614 4766 4915 5060 5201 
2,6 0,99 5339 5473 5603 5731 5855 5975 6093 6207 6319 6427 
2,7 0,99 6533 6636 6736 6838 6928 7020 7110 7197 7282 7365 
2,8 0,99 7445 7523 7599 7673 7744 7814 7882 7948 8012 8074 
2,9 0,99 8134 8193 8250 8305 8359 8411 8462 8511 8559 8605 
3,0 0,99 8650 8694 8736 8777 8817 8856 8893 8930 8965 8999 
3,1 0,999 0324 0646 0957 1260 1660 1836 2112 2378 2636 2886 
3,2 0,999 3129 3363 3590 3810 4010 4230 4429 4623 4810 4991 
3,3 0,999 5166 5335 5499 5658 5811 5959 6103 6242 6346 6506 
3,4 0,999 6631 6752 6869 6982 7091 7197 7299 7398 7493 7585 
3,5 0,999 7674 7760 7842 7922 7999 8074 8146 8215 8282 8347 
3,6 0,999 8409 8469 8527 8583 8637 8689 8739 8787 8834 8879 
3,7 0,999 8922 8964 9004 9043 9080 9116 9150 9184 9216 9247 
3,8 0,9999 2765 3052 3327 3593 3848 4094 4331 4558 4777 4988 
3,9 0,9999 5190 5385 5573 5753 5926 6092 6252 6406 6554 6696 
4,0 0,9999 6833 6964 7090 7211 7327 7439 7546 7649 7748 7843 
4,1 0,9999 7934 8022 8106 8186 8264 8338 8409 8477 8542 8605 
4,2 0,9999 8665 8723 8778 8832 8882 8931 8978 9023 9066 9107 
4,3 0,99999 1460 1837 2198 2544 2876 3193 3497 3788 4066 4332 
4,4 0,99999 4588 4832 5065 5288 5502 5706 5902 6089 6268 6439 
4,5 0,99999 6602 6759 6908 7051 7187 7318 7442 7561 7675 7784 
4,6 0,99999 7888 7987 8081 8172 8258 8340 8419 8494 8566 8634 
4,7 0,99999 8699 8761 8821 8877 8931 8983 9032 9079 9124 9166 
4,8 0,999999 2067 2454 2822 3173 3508 3827 4131 4420 4696 4958 



4,9 0,999999 5208 5446 5673 5888 6094 6289 6475 6652 6821 6981 
5,0 0,999999 7134 7278 7416 7548 7672 7791 7904 8011 8113 8210 
5,1 0,999999 8302 8389 8412 8551 8626 8698 8765 8830 8891 8949 
5,2 0,9999999 004 056 105 152 197 240 280 318 354 388 
5,3 0,9999999 421 452 481 509 539 560 584 606 628 648 
5,4 0,9999999 667 685 702 718 734 748 762 775 787 799 
5,5 0,9999999 810 821 831 840 849 857 865 873 880 886 
5,6 0,9999999 893 899 905 910 915 920 924 929 933 936 
5,7 0,9999999 940 944 947 950 953 955 958 960 963 965 
5,8 0,9999999 967 969 971 972 974 975 977 978 979 981 
5,9 0,9999999 982 983 984 985 986 987 987 988 989 990 
6,0 0,9999999 990 – – – – – – – – – 

Примечание. Значения функции даны числами после запятой. 
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Приложение 5 

Значения функции 𝝋𝟎(𝒕) =
𝟏

√𝟐𝝅
𝒆/

!𝒕𝟐
𝟐

t до зна-
чащих 
цифр 

значащие цифры t 
0 1 2 3 4 5 6 7 8 9 

0,0 0, 3989 3989 3989 3988 3986 3984 3982 3980 3977 3973 
0,1 0, 3970 3965 3961 3956 3951 3945 3939 3932 3925 3918 
0,2 0, 3910 3902 3894 3885 3876 3867 3857 3847 3836 3825 
0,3 0, 3814 3802 3790 3778 3765 3753 3739 3725 3712 3697 
0,4 0, 3683 3668 3653 3637 3621 3605 3589 3572 3555 3538 
0,5 0, 3521 3503 3485 3467 3448 3429 3410 3391 3372 3352 
0,6 0, 3332 3312 3292 3271 3251 3230 3209 3187 3166 3144 
0,7 0, 3123 3101 3079 3056 3034 3011 2989 2966 2943 2920 
0,8 0, 2827 2874 2850 2827 2803 2780 2756 2732 2709 2685 
0,9 0, 2661 2637 2613 2589 2565 2541 2516 2492 2468 2444 
1,0 0, 2420 2396 2371 2347 2323 2299 2275 2251 2227 2203 
1,1 0, 2179 2155 2131 2107 2089 2059 2036 2012 1989 1965 
1,2 0, 1942 1919 1895 1872 1849 1826 1804 1781 1758 1736 
1,3 0, 1714 1691 1669 1647 1626 1604 1582 1561 1539 1518 
1,4 0, 1497 1476 1456 1435 1415 1394 1374 1354 1334 1315 
1,5 0, 1295 1276 1257 1238 1219 12200 1182 1163 1145 1127 
1,6 0, 1109 1096 1074 1057 1040 1023 1006 0989 0973 0957 
1,7 0,0 9405 9246 9089 8933 8780 8628 8478 8329 8183 8038 
1,8 0,0 7895 7754 7614 7477 7341 7206 7074 6943 6814 6687 
1,9 0,0 6562 6438 6316 6195 6077 5959 5844 5730 5618 5508 
2,0 0,0 5399 5292 5186 5082 4980 4879 4780 4682 4586 4491 
2,1 0,0 4398 4307 4217 4128 4041 3955 3871 3788 3706 3626 
2,2 0,0 3547 3470 3394 3319 3246 3174 3103 3034 2965 2898 
2,3 0,0 2833 2768 2705 2643 2586 2522 2443 2406 2349 2294 
2,4 0,0 2239 2186 2134 2083 2033 1984 1936 1888 1842 1797 
2,5 0,0 1753 1709 1667 1625 1585 1545 1506 1468 1431 1394 
2,6 0,0 1358 1324 1289 1256 1223 1191 1160 1130 1100 1071 
2,7 0,0 1042 1014 0987 0961 0935 0909 0885 0861 0837 0814 
2,8 0,00 7915 7996 7483 7274 7071 6873 6679 6491 6307 6127 
2,9 0,00 5952 5782 5616 5454 5296 5143 4993 4847 4705 4567 
3,0 0,00 4432 4301 4173 4049 3928 3810 3695 3584 3475 3370 
3,5 0,00 4432 3267 2384 1723 1232 0873 0612 0425 0292 0199 
4,0 0,000 1328 0893 0589 0385 0249 0160 0101 0064 0040 0024 
4,5 0,00000 149 0897 0536 0317 0186 0108 0062 0035 0020 0011 

Примечание. Значения функции даны числами после запятой. 


